summaryrefslogtreecommitdiff
path: root/src/fortran/lapack/dgeesx.f
blob: deb30ab20e128e433a95963ca6b664b1033d67ea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
      SUBROUTINE DGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM,
     $                   WR, WI, VS, LDVS, RCONDE, RCONDV, WORK, LWORK,
     $                   IWORK, LIWORK, BWORK, INFO )
*
*  -- LAPACK driver routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          JOBVS, SENSE, SORT
      INTEGER            INFO, LDA, LDVS, LIWORK, LWORK, N, SDIM
      DOUBLE PRECISION   RCONDE, RCONDV
*     ..
*     .. Array Arguments ..
      LOGICAL            BWORK( * )
      INTEGER            IWORK( * )
      DOUBLE PRECISION   A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
     $                   WR( * )
*     ..
*     .. Function Arguments ..
      LOGICAL            SELECT
      EXTERNAL           SELECT
*     ..
*
*  Purpose
*  =======
*
*  DGEESX computes for an N-by-N real nonsymmetric matrix A, the
*  eigenvalues, the real Schur form T, and, optionally, the matrix of
*  Schur vectors Z.  This gives the Schur factorization A = Z*T*(Z**T).
*
*  Optionally, it also orders the eigenvalues on the diagonal of the
*  real Schur form so that selected eigenvalues are at the top left;
*  computes a reciprocal condition number for the average of the
*  selected eigenvalues (RCONDE); and computes a reciprocal condition
*  number for the right invariant subspace corresponding to the
*  selected eigenvalues (RCONDV).  The leading columns of Z form an
*  orthonormal basis for this invariant subspace.
*
*  For further explanation of the reciprocal condition numbers RCONDE
*  and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where
*  these quantities are called s and sep respectively).
*
*  A real matrix is in real Schur form if it is upper quasi-triangular
*  with 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in
*  the form
*            [  a  b  ]
*            [  c  a  ]
*
*  where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc).
*
*  Arguments
*  =========
*
*  JOBVS   (input) CHARACTER*1
*          = 'N': Schur vectors are not computed;
*          = 'V': Schur vectors are computed.
*
*  SORT    (input) CHARACTER*1
*          Specifies whether or not to order the eigenvalues on the
*          diagonal of the Schur form.
*          = 'N': Eigenvalues are not ordered;
*          = 'S': Eigenvalues are ordered (see SELECT).
*
*  SELECT  (external procedure) LOGICAL FUNCTION of two DOUBLE PRECISION arguments
*          SELECT must be declared EXTERNAL in the calling subroutine.
*          If SORT = 'S', SELECT is used to select eigenvalues to sort
*          to the top left of the Schur form.
*          If SORT = 'N', SELECT is not referenced.
*          An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if
*          SELECT(WR(j),WI(j)) is true; i.e., if either one of a
*          complex conjugate pair of eigenvalues is selected, then both
*          are.  Note that a selected complex eigenvalue may no longer
*          satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since
*          ordering may change the value of complex eigenvalues
*          (especially if the eigenvalue is ill-conditioned); in this
*          case INFO may be set to N+3 (see INFO below).
*
*  SENSE   (input) CHARACTER*1
*          Determines which reciprocal condition numbers are computed.
*          = 'N': None are computed;
*          = 'E': Computed for average of selected eigenvalues only;
*          = 'V': Computed for selected right invariant subspace only;
*          = 'B': Computed for both.
*          If SENSE = 'E', 'V' or 'B', SORT must equal 'S'.
*
*  N       (input) INTEGER
*          The order of the matrix A. N >= 0.
*
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
*          On entry, the N-by-N matrix A.
*          On exit, A is overwritten by its real Schur form T.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  SDIM    (output) INTEGER
*          If SORT = 'N', SDIM = 0.
*          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
*                         for which SELECT is true. (Complex conjugate
*                         pairs for which SELECT is true for either
*                         eigenvalue count as 2.)
*
*  WR      (output) DOUBLE PRECISION array, dimension (N)
*  WI      (output) DOUBLE PRECISION array, dimension (N)
*          WR and WI contain the real and imaginary parts, respectively,
*          of the computed eigenvalues, in the same order that they
*          appear on the diagonal of the output Schur form T.  Complex
*          conjugate pairs of eigenvalues appear consecutively with the
*          eigenvalue having the positive imaginary part first.
*
*  VS      (output) DOUBLE PRECISION array, dimension (LDVS,N)
*          If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur
*          vectors.
*          If JOBVS = 'N', VS is not referenced.
*
*  LDVS    (input) INTEGER
*          The leading dimension of the array VS.  LDVS >= 1, and if
*          JOBVS = 'V', LDVS >= N.
*
*  RCONDE  (output) DOUBLE PRECISION
*          If SENSE = 'E' or 'B', RCONDE contains the reciprocal
*          condition number for the average of the selected eigenvalues.
*          Not referenced if SENSE = 'N' or 'V'.
*
*  RCONDV  (output) DOUBLE PRECISION
*          If SENSE = 'V' or 'B', RCONDV contains the reciprocal
*          condition number for the selected right invariant subspace.
*          Not referenced if SENSE = 'N' or 'E'.
*
*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.  LWORK >= max(1,3*N).
*          Also, if SENSE = 'E' or 'V' or 'B',
*          LWORK >= N+2*SDIM*(N-SDIM), where SDIM is the number of
*          selected eigenvalues computed by this routine.  Note that
*          N+2*SDIM*(N-SDIM) <= N+N*N/2. Note also that an error is only
*          returned if LWORK < max(1,3*N), but if SENSE = 'E' or 'V' or
*          'B' this may not be large enough.
*          For good performance, LWORK must generally be larger.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates upper bounds on the optimal sizes of the
*          arrays WORK and IWORK, returns these values as the first
*          entries of the WORK and IWORK arrays, and no error messages
*          related to LWORK or LIWORK are issued by XERBLA.
*
*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
*
*  LIWORK  (input) INTEGER
*          The dimension of the array IWORK.
*          LIWORK >= 1; if SENSE = 'V' or 'B', LIWORK >= SDIM*(N-SDIM).
*          Note that SDIM*(N-SDIM) <= N*N/4. Note also that an error is
*          only returned if LIWORK < 1, but if SENSE = 'V' or 'B' this
*          may not be large enough.
*
*          If LIWORK = -1, then a workspace query is assumed; the
*          routine only calculates upper bounds on the optimal sizes of
*          the arrays WORK and IWORK, returns these values as the first
*          entries of the WORK and IWORK arrays, and no error messages
*          related to LWORK or LIWORK are issued by XERBLA.
*
*  BWORK   (workspace) LOGICAL array, dimension (N)
*          Not referenced if SORT = 'N'.
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -i, the i-th argument had an illegal value.
*          > 0: if INFO = i, and i is
*             <= N: the QR algorithm failed to compute all the
*                   eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI
*                   contain those eigenvalues which have converged; if
*                   JOBVS = 'V', VS contains the transformation which
*                   reduces A to its partially converged Schur form.
*             = N+1: the eigenvalues could not be reordered because some
*                   eigenvalues were too close to separate (the problem
*                   is very ill-conditioned);
*             = N+2: after reordering, roundoff changed values of some
*                   complex eigenvalues so that leading eigenvalues in
*                   the Schur form no longer satisfy SELECT=.TRUE.  This
*                   could also be caused by underflow due to scaling.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            CURSL, LASTSL, LQUERY, LST2SL, SCALEA, WANTSB,
     $                   WANTSE, WANTSN, WANTST, WANTSV, WANTVS
      INTEGER            HSWORK, I, I1, I2, IBAL, ICOND, IERR, IEVAL,
     $                   IHI, ILO, INXT, IP, ITAU, IWRK, LIWRK, LWRK,
     $                   MAXWRK, MINWRK
      DOUBLE PRECISION   ANRM, BIGNUM, CSCALE, EPS, SMLNUM
*     ..
*     .. Local Arrays ..
      DOUBLE PRECISION   DUM( 1 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           DCOPY, DGEBAK, DGEBAL, DGEHRD, DHSEQR, DLACPY,
     $                   DLASCL, DORGHR, DSWAP, DTRSEN, XERBLA
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      DOUBLE PRECISION   DLAMCH, DLANGE
      EXTERNAL           LSAME, ILAENV, DLABAD, DLAMCH, DLANGE
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      WANTVS = LSAME( JOBVS, 'V' )
      WANTST = LSAME( SORT, 'S' )
      WANTSN = LSAME( SENSE, 'N' )
      WANTSE = LSAME( SENSE, 'E' )
      WANTSV = LSAME( SENSE, 'V' )
      WANTSB = LSAME( SENSE, 'B' )
      LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
      IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN
         INFO = -1
      ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
         INFO = -2
      ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSV .OR. WANTSB ) .OR.
     $         ( .NOT.WANTST .AND. .NOT.WANTSN ) ) THEN
         INFO = -4
      ELSE IF( N.LT.0 ) THEN
         INFO = -5
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN
         INFO = -12
      END IF
*
*     Compute workspace
*      (Note: Comments in the code beginning "RWorkspace:" describe the
*       minimal amount of real workspace needed at that point in the
*       code, as well as the preferred amount for good performance.
*       IWorkspace refers to integer workspace.
*       NB refers to the optimal block size for the immediately
*       following subroutine, as returned by ILAENV.
*       HSWORK refers to the workspace preferred by DHSEQR, as
*       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
*       the worst case.
*       If SENSE = 'E', 'V' or 'B', then the amount of workspace needed
*       depends on SDIM, which is computed by the routine DTRSEN later
*       in the code.)
*
      IF( INFO.EQ.0 ) THEN
         LIWRK = 1
         IF( N.EQ.0 ) THEN
            MINWRK = 1
            LWRK = 1
         ELSE
            MAXWRK = 2*N + N*ILAENV( 1, 'DGEHRD', ' ', N, 1, N, 0 )
            MINWRK = 3*N
*
            CALL DHSEQR( 'S', JOBVS, N, 1, N, A, LDA, WR, WI, VS, LDVS,
     $             WORK, -1, IEVAL )
            HSWORK = WORK( 1 )
*
            IF( .NOT.WANTVS ) THEN
               MAXWRK = MAX( MAXWRK, N + HSWORK )
            ELSE
               MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
     $                       'DORGHR', ' ', N, 1, N, -1 ) )
               MAXWRK = MAX( MAXWRK, N + HSWORK )
            END IF
            LWRK = MAXWRK
            IF( .NOT.WANTSN )
     $         LWRK = MAX( LWRK, N + ( N*N )/2 )
            IF( WANTSV .OR. WANTSB )
     $         LIWRK = ( N*N )/4
         END IF
         IWORK( 1 ) = LIWRK
         WORK( 1 ) = LWRK
*
         IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
            INFO = -16
         ELSE IF( LIWORK.LT.1 .AND. .NOT.LQUERY ) THEN
            INFO = -18
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DGEESX', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 ) THEN
         SDIM = 0
         RETURN
      END IF
*
*     Get machine constants
*
      EPS = DLAMCH( 'P' )
      SMLNUM = DLAMCH( 'S' )
      BIGNUM = ONE / SMLNUM
      CALL DLABAD( SMLNUM, BIGNUM )
      SMLNUM = SQRT( SMLNUM ) / EPS
      BIGNUM = ONE / SMLNUM
*
*     Scale A if max element outside range [SMLNUM,BIGNUM]
*
      ANRM = DLANGE( 'M', N, N, A, LDA, DUM )
      SCALEA = .FALSE.
      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
         SCALEA = .TRUE.
         CSCALE = SMLNUM
      ELSE IF( ANRM.GT.BIGNUM ) THEN
         SCALEA = .TRUE.
         CSCALE = BIGNUM
      END IF
      IF( SCALEA )
     $   CALL DLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
*
*     Permute the matrix to make it more nearly triangular
*     (RWorkspace: need N)
*
      IBAL = 1
      CALL DGEBAL( 'P', N, A, LDA, ILO, IHI, WORK( IBAL ), IERR )
*
*     Reduce to upper Hessenberg form
*     (RWorkspace: need 3*N, prefer 2*N+N*NB)
*
      ITAU = N + IBAL
      IWRK = N + ITAU
      CALL DGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
     $             LWORK-IWRK+1, IERR )
*
      IF( WANTVS ) THEN
*
*        Copy Householder vectors to VS
*
         CALL DLACPY( 'L', N, N, A, LDA, VS, LDVS )
*
*        Generate orthogonal matrix in VS
*        (RWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
*
         CALL DORGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ),
     $                LWORK-IWRK+1, IERR )
      END IF
*
      SDIM = 0
*
*     Perform QR iteration, accumulating Schur vectors in VS if desired
*     (RWorkspace: need N+1, prefer N+HSWORK (see comments) )
*
      IWRK = ITAU
      CALL DHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, WR, WI, VS, LDVS,
     $             WORK( IWRK ), LWORK-IWRK+1, IEVAL )
      IF( IEVAL.GT.0 )
     $   INFO = IEVAL
*
*     Sort eigenvalues if desired
*
      IF( WANTST .AND. INFO.EQ.0 ) THEN
         IF( SCALEA ) THEN
            CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WR, N, IERR )
            CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WI, N, IERR )
         END IF
         DO 10 I = 1, N
            BWORK( I ) = SELECT( WR( I ), WI( I ) )
   10    CONTINUE
*
*        Reorder eigenvalues, transform Schur vectors, and compute
*        reciprocal condition numbers
*        (RWorkspace: if SENSE is not 'N', need N+2*SDIM*(N-SDIM)
*                     otherwise, need N )
*        (IWorkspace: if SENSE is 'V' or 'B', need SDIM*(N-SDIM)
*                     otherwise, need 0 )
*
         CALL DTRSEN( SENSE, JOBVS, BWORK, N, A, LDA, VS, LDVS, WR, WI,
     $                SDIM, RCONDE, RCONDV, WORK( IWRK ), LWORK-IWRK+1,
     $                IWORK, LIWORK, ICOND )
         IF( .NOT.WANTSN )
     $      MAXWRK = MAX( MAXWRK, N+2*SDIM*( N-SDIM ) )
         IF( ICOND.EQ.-15 ) THEN
*
*           Not enough real workspace
*
            INFO = -16
         ELSE IF( ICOND.EQ.-17 ) THEN
*
*           Not enough integer workspace
*
            INFO = -18
         ELSE IF( ICOND.GT.0 ) THEN
*
*           DTRSEN failed to reorder or to restore standard Schur form
*
            INFO = ICOND + N
         END IF
      END IF
*
      IF( WANTVS ) THEN
*
*        Undo balancing
*        (RWorkspace: need N)
*
         CALL DGEBAK( 'P', 'R', N, ILO, IHI, WORK( IBAL ), N, VS, LDVS,
     $                IERR )
      END IF
*
      IF( SCALEA ) THEN
*
*        Undo scaling for the Schur form of A
*
         CALL DLASCL( 'H', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR )
         CALL DCOPY( N, A, LDA+1, WR, 1 )
         IF( ( WANTSV .OR. WANTSB ) .AND. INFO.EQ.0 ) THEN
            DUM( 1 ) = RCONDV
            CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, 1, 1, DUM, 1, IERR )
            RCONDV = DUM( 1 )
         END IF
         IF( CSCALE.EQ.SMLNUM ) THEN
*
*           If scaling back towards underflow, adjust WI if an
*           offdiagonal element of a 2-by-2 block in the Schur form
*           underflows.
*
            IF( IEVAL.GT.0 ) THEN
               I1 = IEVAL + 1
               I2 = IHI - 1
               CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI, N,
     $                      IERR )
            ELSE IF( WANTST ) THEN
               I1 = 1
               I2 = N - 1
            ELSE
               I1 = ILO
               I2 = IHI - 1
            END IF
            INXT = I1 - 1
            DO 20 I = I1, I2
               IF( I.LT.INXT )
     $            GO TO 20
               IF( WI( I ).EQ.ZERO ) THEN
                  INXT = I + 1
               ELSE
                  IF( A( I+1, I ).EQ.ZERO ) THEN
                     WI( I ) = ZERO
                     WI( I+1 ) = ZERO
                  ELSE IF( A( I+1, I ).NE.ZERO .AND. A( I, I+1 ).EQ.
     $                     ZERO ) THEN
                     WI( I ) = ZERO
                     WI( I+1 ) = ZERO
                     IF( I.GT.1 )
     $                  CALL DSWAP( I-1, A( 1, I ), 1, A( 1, I+1 ), 1 )
                     IF( N.GT.I+1 )
     $                  CALL DSWAP( N-I-1, A( I, I+2 ), LDA,
     $                              A( I+1, I+2 ), LDA )
                     CALL DSWAP( N, VS( 1, I ), 1, VS( 1, I+1 ), 1 )
                     A( I, I+1 ) = A( I+1, I )
                     A( I+1, I ) = ZERO
                  END IF
                  INXT = I + 2
               END IF
   20       CONTINUE
         END IF
         CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-IEVAL, 1,
     $                WI( IEVAL+1 ), MAX( N-IEVAL, 1 ), IERR )
      END IF
*
      IF( WANTST .AND. INFO.EQ.0 ) THEN
*
*        Check if reordering successful
*
         LASTSL = .TRUE.
         LST2SL = .TRUE.
         SDIM = 0
         IP = 0
         DO 30 I = 1, N
            CURSL = SELECT( WR( I ), WI( I ) )
            IF( WI( I ).EQ.ZERO ) THEN
               IF( CURSL )
     $            SDIM = SDIM + 1
               IP = 0
               IF( CURSL .AND. .NOT.LASTSL )
     $            INFO = N + 2
            ELSE
               IF( IP.EQ.1 ) THEN
*
*                 Last eigenvalue of conjugate pair
*
                  CURSL = CURSL .OR. LASTSL
                  LASTSL = CURSL
                  IF( CURSL )
     $               SDIM = SDIM + 2
                  IP = -1
                  IF( CURSL .AND. .NOT.LST2SL )
     $               INFO = N + 2
               ELSE
*
*                 First eigenvalue of conjugate pair
*
                  IP = 1
               END IF
            END IF
            LST2SL = LASTSL
            LASTSL = CURSL
   30    CONTINUE
      END IF
*
      WORK( 1 ) = MAXWRK
      IF( WANTSV .OR. WANTSB ) THEN
         IWORK( 1 ) = MAX( 1, SDIM*( N-SDIM ) )
      ELSE
         IWORK( 1 ) = 1
      END IF
*
      RETURN
*
*     End of DGEESX
*
      END