1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
|
SUBROUTINE ZGERC ( M, N, ALPHA, X, INCX, Y, INCY, A, LDA )
* .. Scalar Arguments ..
COMPLEX*16 ALPHA
INTEGER INCX, INCY, LDA, M, N
* .. Array Arguments ..
COMPLEX*16 A( LDA, * ), X( * ), Y( * )
* ..
*
* Purpose
* =======
*
* ZGERC performs the rank 1 operation
*
* A := alpha*x*conjg( y' ) + A,
*
* where alpha is a scalar, x is an m element vector, y is an n element
* vector and A is an m by n matrix.
*
* Parameters
* ==========
*
* M - INTEGER.
* On entry, M specifies the number of rows of the matrix A.
* M must be at least zero.
* Unchanged on exit.
*
* N - INTEGER.
* On entry, N specifies the number of columns of the matrix A.
* N must be at least zero.
* Unchanged on exit.
*
* ALPHA - COMPLEX*16 .
* On entry, ALPHA specifies the scalar alpha.
* Unchanged on exit.
*
* X - COMPLEX*16 array of dimension at least
* ( 1 + ( m - 1 )*abs( INCX ) ).
* Before entry, the incremented array X must contain the m
* element vector x.
* Unchanged on exit.
*
* INCX - INTEGER.
* On entry, INCX specifies the increment for the elements of
* X. INCX must not be zero.
* Unchanged on exit.
*
* Y - COMPLEX*16 array of dimension at least
* ( 1 + ( n - 1 )*abs( INCY ) ).
* Before entry, the incremented array Y must contain the n
* element vector y.
* Unchanged on exit.
*
* INCY - INTEGER.
* On entry, INCY specifies the increment for the elements of
* Y. INCY must not be zero.
* Unchanged on exit.
*
* A - COMPLEX*16 array of DIMENSION ( LDA, n ).
* Before entry, the leading m by n part of the array A must
* contain the matrix of coefficients. On exit, A is
* overwritten by the updated matrix.
*
* LDA - INTEGER.
* On entry, LDA specifies the first dimension of A as declared
* in the calling (sub) program. LDA must be at least
* max( 1, m ).
* Unchanged on exit.
*
*
* Level 2 Blas routine.
*
* -- Written on 22-October-1986.
* Jack Dongarra, Argonne National Lab.
* Jeremy Du Croz, Nag Central Office.
* Sven Hammarling, Nag Central Office.
* Richard Hanson, Sandia National Labs.
*
*
* .. Parameters ..
COMPLEX*16 ZERO
PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
* .. Local Scalars ..
COMPLEX*16 TEMP
INTEGER I, INFO, IX, J, JY, KX
* .. External Subroutines ..
EXTERNAL XERBLA
* .. Intrinsic Functions ..
INTRINSIC DCONJG, MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
IF ( M.LT.0 )THEN
INFO = 1
ELSE IF( N.LT.0 )THEN
INFO = 2
ELSE IF( INCX.EQ.0 )THEN
INFO = 5
ELSE IF( INCY.EQ.0 )THEN
INFO = 7
ELSE IF( LDA.LT.MAX( 1, M ) )THEN
INFO = 9
END IF
IF( INFO.NE.0 )THEN
CALL XERBLA( 'ZGERC ', INFO )
RETURN
END IF
*
* Quick return if possible.
*
IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.( ALPHA.EQ.ZERO ) )
$ RETURN
*
* Start the operations. In this version the elements of A are
* accessed sequentially with one pass through A.
*
IF( INCY.GT.0 )THEN
JY = 1
ELSE
JY = 1 - ( N - 1 )*INCY
END IF
IF( INCX.EQ.1 )THEN
DO 20, J = 1, N
IF( Y( JY ).NE.ZERO )THEN
TEMP = ALPHA*DCONJG( Y( JY ) )
DO 10, I = 1, M
A( I, J ) = A( I, J ) + X( I )*TEMP
10 CONTINUE
END IF
JY = JY + INCY
20 CONTINUE
ELSE
IF( INCX.GT.0 )THEN
KX = 1
ELSE
KX = 1 - ( M - 1 )*INCX
END IF
DO 40, J = 1, N
IF( Y( JY ).NE.ZERO )THEN
TEMP = ALPHA*DCONJG( Y( JY ) )
IX = KX
DO 30, I = 1, M
A( I, J ) = A( I, J ) + X( IX )*TEMP
IX = IX + INCX
30 CONTINUE
END IF
JY = JY + INCY
40 CONTINUE
END IF
*
RETURN
*
* End of ZGERC .
*
END
|