summaryrefslogtreecommitdiff
path: root/src/fortran/blas/zgbmv.f
blob: 91ce9a60b534802e1c625b3be83cf1c72c26748a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
      SUBROUTINE ZGBMV ( TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX,
     $                   BETA, Y, INCY )
*     .. Scalar Arguments ..
      COMPLEX*16         ALPHA, BETA
      INTEGER            INCX, INCY, KL, KU, LDA, M, N
      CHARACTER*1        TRANS
*     .. Array Arguments ..
      COMPLEX*16         A( LDA, * ), X( * ), Y( * )
*     ..
*
*  Purpose
*  =======
*
*  ZGBMV  performs one of the matrix-vector operations
*
*     y := alpha*A*x + beta*y,   or   y := alpha*A'*x + beta*y,   or
*
*     y := alpha*conjg( A' )*x + beta*y,
*
*  where alpha and beta are scalars, x and y are vectors and A is an
*  m by n band matrix, with kl sub-diagonals and ku super-diagonals.
*
*  Parameters
*  ==========
*
*  TRANS  - CHARACTER*1.
*           On entry, TRANS specifies the operation to be performed as
*           follows:
*
*              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.
*
*              TRANS = 'T' or 't'   y := alpha*A'*x + beta*y.
*
*              TRANS = 'C' or 'c'   y := alpha*conjg( A' )*x + beta*y.
*
*           Unchanged on exit.
*
*  M      - INTEGER.
*           On entry, M specifies the number of rows of the matrix A.
*           M must be at least zero.
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the number of columns of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  KL     - INTEGER.
*           On entry, KL specifies the number of sub-diagonals of the
*           matrix A. KL must satisfy  0 .le. KL.
*           Unchanged on exit.
*
*  KU     - INTEGER.
*           On entry, KU specifies the number of super-diagonals of the
*           matrix A. KU must satisfy  0 .le. KU.
*           Unchanged on exit.
*
*  ALPHA  - COMPLEX*16      .
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  A      - COMPLEX*16       array of DIMENSION ( LDA, n ).
*           Before entry, the leading ( kl + ku + 1 ) by n part of the
*           array A must contain the matrix of coefficients, supplied
*           column by column, with the leading diagonal of the matrix in
*           row ( ku + 1 ) of the array, the first super-diagonal
*           starting at position 2 in row ku, the first sub-diagonal
*           starting at position 1 in row ( ku + 2 ), and so on.
*           Elements in the array A that do not correspond to elements
*           in the band matrix (such as the top left ku by ku triangle)
*           are not referenced.
*           The following program segment will transfer a band matrix
*           from conventional full matrix storage to band storage:
*
*                 DO 20, J = 1, N
*                    K = KU + 1 - J
*                    DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
*                       A( K + I, J ) = matrix( I, J )
*              10    CONTINUE
*              20 CONTINUE
*
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program. LDA must be at least
*           ( kl + ku + 1 ).
*           Unchanged on exit.
*
*  X      - COMPLEX*16       array of DIMENSION at least
*           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
*           and at least
*           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
*           Before entry, the incremented array X must contain the
*           vector x.
*           Unchanged on exit.
*
*  INCX   - INTEGER.
*           On entry, INCX specifies the increment for the elements of
*           X. INCX must not be zero.
*           Unchanged on exit.
*
*  BETA   - COMPLEX*16      .
*           On entry, BETA specifies the scalar beta. When BETA is
*           supplied as zero then Y need not be set on input.
*           Unchanged on exit.
*
*  Y      - COMPLEX*16       array of DIMENSION at least
*           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
*           and at least
*           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
*           Before entry, the incremented array Y must contain the
*           vector y. On exit, Y is overwritten by the updated vector y.
*
*
*  INCY   - INTEGER.
*           On entry, INCY specifies the increment for the elements of
*           Y. INCY must not be zero.
*           Unchanged on exit.
*
*
*  Level 2 Blas routine.
*
*  -- Written on 22-October-1986.
*     Jack Dongarra, Argonne National Lab.
*     Jeremy Du Croz, Nag Central Office.
*     Sven Hammarling, Nag Central Office.
*     Richard Hanson, Sandia National Labs.
*
*
*     .. Parameters ..
      COMPLEX*16         ONE
      PARAMETER        ( ONE  = ( 1.0D+0, 0.0D+0 ) )
      COMPLEX*16         ZERO
      PARAMETER        ( ZERO = ( 0.0D+0, 0.0D+0 ) )
*     .. Local Scalars ..
      COMPLEX*16         TEMP
      INTEGER            I, INFO, IX, IY, J, JX, JY, K, KUP1, KX, KY,
     $                   LENX, LENY
      LOGICAL            NOCONJ
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     .. Intrinsic Functions ..
      INTRINSIC          DCONJG, MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      IF     ( .NOT.LSAME( TRANS, 'N' ).AND.
     $         .NOT.LSAME( TRANS, 'T' ).AND.
     $         .NOT.LSAME( TRANS, 'C' )      )THEN
         INFO = 1
      ELSE IF( M.LT.0 )THEN
         INFO = 2
      ELSE IF( N.LT.0 )THEN
         INFO = 3
      ELSE IF( KL.LT.0 )THEN
         INFO = 4
      ELSE IF( KU.LT.0 )THEN
         INFO = 5
      ELSE IF( LDA.LT.( KL + KU + 1 ) )THEN
         INFO = 8
      ELSE IF( INCX.EQ.0 )THEN
         INFO = 10
      ELSE IF( INCY.EQ.0 )THEN
         INFO = 13
      END IF
      IF( INFO.NE.0 )THEN
         CALL XERBLA( 'ZGBMV ', INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
     $    ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
     $   RETURN
*
      NOCONJ = LSAME( TRANS, 'T' )
*
*     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
*     up the start points in  X  and  Y.
*
      IF( LSAME( TRANS, 'N' ) )THEN
         LENX = N
         LENY = M
      ELSE
         LENX = M
         LENY = N
      END IF
      IF( INCX.GT.0 )THEN
         KX = 1
      ELSE
         KX = 1 - ( LENX - 1 )*INCX
      END IF
      IF( INCY.GT.0 )THEN
         KY = 1
      ELSE
         KY = 1 - ( LENY - 1 )*INCY
      END IF
*
*     Start the operations. In this version the elements of A are
*     accessed sequentially with one pass through the band part of A.
*
*     First form  y := beta*y.
*
      IF( BETA.NE.ONE )THEN
         IF( INCY.EQ.1 )THEN
            IF( BETA.EQ.ZERO )THEN
               DO 10, I = 1, LENY
                  Y( I ) = ZERO
   10          CONTINUE
            ELSE
               DO 20, I = 1, LENY
                  Y( I ) = BETA*Y( I )
   20          CONTINUE
            END IF
         ELSE
            IY = KY
            IF( BETA.EQ.ZERO )THEN
               DO 30, I = 1, LENY
                  Y( IY ) = ZERO
                  IY      = IY   + INCY
   30          CONTINUE
            ELSE
               DO 40, I = 1, LENY
                  Y( IY ) = BETA*Y( IY )
                  IY      = IY           + INCY
   40          CONTINUE
            END IF
         END IF
      END IF
      IF( ALPHA.EQ.ZERO )
     $   RETURN
      KUP1 = KU + 1
      IF( LSAME( TRANS, 'N' ) )THEN
*
*        Form  y := alpha*A*x + y.
*
         JX = KX
         IF( INCY.EQ.1 )THEN
            DO 60, J = 1, N
               IF( X( JX ).NE.ZERO )THEN
                  TEMP = ALPHA*X( JX )
                  K    = KUP1 - J
                  DO 50, I = MAX( 1, J - KU ), MIN( M, J + KL )
                     Y( I ) = Y( I ) + TEMP*A( K + I, J )
   50             CONTINUE
               END IF
               JX = JX + INCX
   60       CONTINUE
         ELSE
            DO 80, J = 1, N
               IF( X( JX ).NE.ZERO )THEN
                  TEMP = ALPHA*X( JX )
                  IY   = KY
                  K    = KUP1 - J
                  DO 70, I = MAX( 1, J - KU ), MIN( M, J + KL )
                     Y( IY ) = Y( IY ) + TEMP*A( K + I, J )
                     IY      = IY      + INCY
   70             CONTINUE
               END IF
               JX = JX + INCX
               IF( J.GT.KU )
     $            KY = KY + INCY
   80       CONTINUE
         END IF
      ELSE
*
*        Form  y := alpha*A'*x + y  or  y := alpha*conjg( A' )*x + y.
*
         JY = KY
         IF( INCX.EQ.1 )THEN
            DO 110, J = 1, N
               TEMP = ZERO
               K    = KUP1 - J
               IF( NOCONJ )THEN
                  DO 90, I = MAX( 1, J - KU ), MIN( M, J + KL )
                     TEMP = TEMP + A( K + I, J )*X( I )
   90             CONTINUE
               ELSE
                  DO 100, I = MAX( 1, J - KU ), MIN( M, J + KL )
                     TEMP = TEMP + DCONJG( A( K + I, J ) )*X( I )
  100             CONTINUE
               END IF
               Y( JY ) = Y( JY ) + ALPHA*TEMP
               JY      = JY      + INCY
  110       CONTINUE
         ELSE
            DO 140, J = 1, N
               TEMP = ZERO
               IX   = KX
               K    = KUP1 - J
               IF( NOCONJ )THEN
                  DO 120, I = MAX( 1, J - KU ), MIN( M, J + KL )
                     TEMP = TEMP + A( K + I, J )*X( IX )
                     IX   = IX   + INCX
  120             CONTINUE
               ELSE
                  DO 130, I = MAX( 1, J - KU ), MIN( M, J + KL )
                     TEMP = TEMP + DCONJG( A( K + I, J ) )*X( IX )
                     IX   = IX   + INCX
  130             CONTINUE
               END IF
               Y( JY ) = Y( JY ) + ALPHA*TEMP
               JY      = JY      + INCY
               IF( J.GT.KU )
     $            KX = KX + INCX
  140       CONTINUE
         END IF
      END IF
*
      RETURN
*
*     End of ZGBMV .
*
      END