summaryrefslogtreecommitdiff
path: root/src/fortran/blas/dgemm.f
blob: 1531fd575109a901964e8b0eaeb7ee19f185d639 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
      SUBROUTINE DGEMM ( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB,
     $                   BETA, C, LDC )
*     .. Scalar Arguments ..
      CHARACTER*1        TRANSA, TRANSB
      INTEGER            M, N, K, LDA, LDB, LDC
      DOUBLE PRECISION   ALPHA, BETA
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), C( LDC, * )
*     ..
C     WARNING : this routine has been modified for Scilab (see comments
C     Cscilab)  because algorithm is not ok if A matrix contains NaN
C     (NaN*0 should be NaN, not 0)
*  Purpose
*  =======
*
*  DGEMM  performs one of the matrix-matrix operations
*
*     C := alpha*op( A )*op( B ) + beta*C,
*
*  where  op( X ) is one of
*
*     op( X ) = X   or   op( X ) = X',
*
*  alpha and beta are scalars, and A, B and C are matrices, with op( A )
*  an m by k matrix,  op( B )  a  k by n matrix and  C an m by n matrix.
*
*  Parameters
*  ==========
*
*  TRANSA - CHARACTER*1.
*           On entry, TRANSA specifies the form of op( A ) to be used in
*           the matrix multiplication as follows:
*
*              TRANSA = 'N' or 'n',  op( A ) = A.
*
*              TRANSA = 'T' or 't',  op( A ) = A'.
*
*              TRANSA = 'C' or 'c',  op( A ) = A'.
*
*           Unchanged on exit.
*
*  TRANSB - CHARACTER*1.
*           On entry, TRANSB specifies the form of op( B ) to be used in
*           the matrix multiplication as follows:
*
*              TRANSB = 'N' or 'n',  op( B ) = B.
*
*              TRANSB = 'T' or 't',  op( B ) = B'.
*
*              TRANSB = 'C' or 'c',  op( B ) = B'.
*
*           Unchanged on exit.
*
*  M      - INTEGER.
*           On entry,  M  specifies  the number  of rows  of the  matrix
*           op( A )  and of the  matrix  C.  M  must  be at least  zero.
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry,  N  specifies the number  of columns of the matrix
*           op( B ) and the number of columns of the matrix C. N must be
*           at least zero.
*           Unchanged on exit.
*
*  K      - INTEGER.
*           On entry,  K  specifies  the number of columns of the matrix
*           op( A ) and the number of rows of the matrix op( B ). K must
*           be at least  zero.
*           Unchanged on exit.
*
*  ALPHA  - DOUBLE PRECISION.
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is
*           k  when  TRANSA = 'N' or 'n',  and is  m  otherwise.
*           Before entry with  TRANSA = 'N' or 'n',  the leading  m by k
*           part of the array  A  must contain the matrix  A,  otherwise
*           the leading  k by m  part of the array  A  must contain  the
*           matrix A.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program. When  TRANSA = 'N' or 'n' then
*           LDA must be at least  max( 1, m ), otherwise  LDA must be at
*           least  max( 1, k ).
*           Unchanged on exit.
*
*  B      - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is
*           n  when  TRANSB = 'N' or 'n',  and is  k  otherwise.
*           Before entry with  TRANSB = 'N' or 'n',  the leading  k by n
*           part of the array  B  must contain the matrix  B,  otherwise
*           the leading  n by k  part of the array  B  must contain  the
*           matrix B.
*           Unchanged on exit.
*
*  LDB    - INTEGER.
*           On entry, LDB specifies the first dimension of B as declared
*           in the calling (sub) program. When  TRANSB = 'N' or 'n' then
*           LDB must be at least  max( 1, k ), otherwise  LDB must be at
*           least  max( 1, n ).
*           Unchanged on exit.
*
*  BETA   - DOUBLE PRECISION.
*           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
*           supplied as zero then C need not be set on input.
*           Unchanged on exit.
*
*  C      - DOUBLE PRECISION array of DIMENSION ( LDC, n ).
*           Before entry, the leading  m by n  part of the array  C must
*           contain the matrix  C,  except when  beta  is zero, in which
*           case C need not be set on entry.
*           On exit, the array  C  is overwritten by the  m by n  matrix
*           ( alpha*op( A )*op( B ) + beta*C ).
*
*  LDC    - INTEGER.
*           On entry, LDC specifies the first dimension of C as declared
*           in  the  calling  (sub)  program.   LDC  must  be  at  least
*           max( 1, m ).
*           Unchanged on exit.
*
*
*  Level 3 Blas routine.
*
*  -- Written on 8-February-1989.
*     Jack Dongarra, Argonne National Laboratory.
*     Iain Duff, AERE Harwell.
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*     Sven Hammarling, Numerical Algorithms Group Ltd.
*
*
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     .. Local Scalars ..
      LOGICAL            NOTA, NOTB
      INTEGER            I, INFO, J, L, NCOLA, NROWA, NROWB
      DOUBLE PRECISION   TEMP
*     .. Parameters ..
      DOUBLE PRECISION   ONE         , ZERO
      PARAMETER        ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Executable Statements ..
*
*     Set  NOTA  and  NOTB  as  true if  A  and  B  respectively are not
*     transposed and set  NROWA, NCOLA and  NROWB  as the number of rows
*     and  columns of  A  and the  number of  rows  of  B  respectively.
*
      NOTA  = LSAME( TRANSA, 'N' )
      NOTB  = LSAME( TRANSB, 'N' )
      IF( NOTA )THEN
         NROWA = M
         NCOLA = K
      ELSE
         NROWA = K
         NCOLA = M
      END IF
      IF( NOTB )THEN
         NROWB = K
      ELSE
         NROWB = N
      END IF
*
*     Test the input parameters.
*
      INFO = 0
      IF(      ( .NOT.NOTA                 ).AND.
     $         ( .NOT.LSAME( TRANSA, 'C' ) ).AND.
     $         ( .NOT.LSAME( TRANSA, 'T' ) )      )THEN
         INFO = 1
      ELSE IF( ( .NOT.NOTB                 ).AND.
     $         ( .NOT.LSAME( TRANSB, 'C' ) ).AND.
     $         ( .NOT.LSAME( TRANSB, 'T' ) )      )THEN
         INFO = 2
      ELSE IF( M  .LT.0               )THEN
         INFO = 3
      ELSE IF( N  .LT.0               )THEN
         INFO = 4
      ELSE IF( K  .LT.0               )THEN
         INFO = 5
      ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
         INFO = 8
      ELSE IF( LDB.LT.MAX( 1, NROWB ) )THEN
         INFO = 10
      ELSE IF( LDC.LT.MAX( 1, M     ) )THEN
         INFO = 13
      END IF
      IF( INFO.NE.0 )THEN
         CALL XERBLA( 'DGEMM ', INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
     $    ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )
     $   RETURN
*
*     And if  alpha.eq.zero.
*
      IF( ALPHA.EQ.ZERO )THEN
         IF( BETA.EQ.ZERO )THEN
            DO 20, J = 1, N
               DO 10, I = 1, M
                  C( I, J ) = ZERO
   10          CONTINUE
   20       CONTINUE
         ELSE
            DO 40, J = 1, N
               DO 30, I = 1, M
                  C( I, J ) = BETA*C( I, J )
   30          CONTINUE
   40       CONTINUE
         END IF
         RETURN
      END IF
*
*     Start the operations.
*
      IF( NOTB )THEN
         IF( NOTA )THEN
*
*           Form  C := alpha*A*B + beta*C.
*
            DO 90, J = 1, N
               IF( BETA.EQ.ZERO )THEN
                  DO 50, I = 1, M
                     C( I, J ) = ZERO
   50             CONTINUE
               ELSE IF( BETA.NE.ONE )THEN
                  DO 60, I = 1, M
                     C( I, J ) = BETA*C( I, J )
   60             CONTINUE
               END IF
               DO 80, L = 1, K
Cscilab                  IF( B( L, J ).NE.ZERO )THEN
                     TEMP = ALPHA*B( L, J )
                     DO 70, I = 1, M
                        C( I, J ) = C( I, J ) + TEMP*A( I, L )
   70                CONTINUE
Cscilab                   END IF
   80          CONTINUE
   90       CONTINUE
         ELSE
*
*           Form  C := alpha*A'*B + beta*C
*
            DO 120, J = 1, N
               DO 110, I = 1, M
                  TEMP = ZERO
                  DO 100, L = 1, K
                     TEMP = TEMP + A( L, I )*B( L, J )
  100             CONTINUE
                  IF( BETA.EQ.ZERO )THEN
                     C( I, J ) = ALPHA*TEMP
                  ELSE
                     C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
                  END IF
  110          CONTINUE
  120       CONTINUE
         END IF
      ELSE
         IF( NOTA )THEN
*
*           Form  C := alpha*A*B' + beta*C
*
            DO 170, J = 1, N
               IF( BETA.EQ.ZERO )THEN
                  DO 130, I = 1, M
                     C( I, J ) = ZERO
  130             CONTINUE
               ELSE IF( BETA.NE.ONE )THEN
                  DO 140, I = 1, M
                     C( I, J ) = BETA*C( I, J )
  140             CONTINUE
               END IF
               DO 160, L = 1, K
Cscilab                   IF( B( J, L ).NE.ZERO )THEN
                     TEMP = ALPHA*B( J, L )
                     DO 150, I = 1, M
                        C( I, J ) = C( I, J ) + TEMP*A( I, L )
  150                CONTINUE
Cscilab                   END IF
  160          CONTINUE
  170       CONTINUE
         ELSE
*
*           Form  C := alpha*A'*B' + beta*C
*
            DO 200, J = 1, N
               DO 190, I = 1, M
                  TEMP = ZERO
                  DO 180, L = 1, K
                     TEMP = TEMP + A( L, I )*B( J, L )
  180             CONTINUE
                  IF( BETA.EQ.ZERO )THEN
                     C( I, J ) = ALPHA*TEMP
                  ELSE
                     C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
                  END IF
  190          CONTINUE
  200       CONTINUE
         END IF
      END IF
*
      RETURN
*
*     End of DGEMM .
*
      END