summaryrefslogtreecommitdiff
path: root/src/c/specialFunctions/bessely/dbesselya.c
blob: 766786291a0388cacebf02f8cd312c51472af442 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
/* Copyright (C) 2017 - IIT Bombay - FOSSEE

 This file must be used under the terms of the CeCILL.
 This source file is licensed as described in the file COPYING, which
 you should have received as part of this distribution.  The terms
 are also available at
 http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
 Organization: FOSSEE, IIT Bombay
 Author: Brijesh Gupta C R
 Email: toolbox@scilab.in
*/
#include <stdio.h>
#include     "math.h"
#include     "bessely.h"
#include     "besselj.h"

#define ACC 40.0
#define BIGNO 1.0e10
#define BIGNI 1.0e-10

static double bessj0( double x )
{
   double ax,z;
   double xx,y,ans,ans1,ans2;

   if ((ax=fabs(x)) < 8.0) {
      y=x*x;
      ans1=57568490574.0+y*(-13362590354.0+y*(651619640.7
         +y*(-11214424.18+y*(77392.33017+y*(-184.9052456)))));
      ans2=57568490411.0+y*(1029532985.0+y*(9494680.718
         +y*(59272.64853+y*(267.8532712+y*1.0))));
      ans=ans1/ans2;
   } else {
      z=8.0/ax;
      y=z*z;
      xx=ax-0.785398164;
      ans1=1.0+y*(-0.1098628627e-2+y*(0.2734510407e-4
         +y*(-0.2073370639e-5+y*0.2093887211e-6)));
      ans2 = -0.1562499995e-1+y*(0.1430488765e-3
         +y*(-0.6911147651e-5+y*(0.7621095161e-6
         -y*0.934935152e-7)));
      ans=sqrt(0.636619772/ax)*(cos(xx)*ans1-z*sin(xx)*ans2);
   }
   return ans;
}


static double bessj1( double x )
{
   double ax,z;
   double xx,y,ans,ans1,ans2;

   if ((ax=fabs(x)) < 8.0) {
      y=x*x;
      ans1=x*(72362614232.0+y*(-7895059235.0+y*(242396853.1
         +y*(-2972611.439+y*(15704.48260+y*(-30.16036606))))));
      ans2=144725228442.0+y*(2300535178.0+y*(18583304.74
         +y*(99447.43394+y*(376.9991397+y*1.0))));
      ans=ans1/ans2;
   } else {
      z=8.0/ax;
      y=z*z;
      xx=ax-2.356194491;
      ans1=1.0+y*(0.183105e-2+y*(-0.3516396496e-4
         +y*(0.2457520174e-5+y*(-0.240337019e-6))));
      ans2=0.04687499995+y*(-0.2002690873e-3
         +y*(0.8449199096e-5+y*(-0.88228987e-6
         +y*0.105787412e-6)));
      ans=sqrt(0.636619772/ax)*(cos(xx)*ans1-z*sin(xx)*ans2);
      if (x < 0.0) ans = -ans;
   }
   return ans;
}


static double bessy0( double x )
{
   double z;
   double xx,y,ans,ans1,ans2;

   if (x < 8.0) {
      y=x*x;
      ans1 = -2957821389.0+y*(7062834065.0+y*(-512359803.6
         +y*(10879881.29+y*(-86327.92757+y*228.4622733))));
      ans2=40076544269.0+y*(745249964.8+y*(7189466.438
         +y*(47447.26470+y*(226.1030244+y*1.0))));
      ans=(ans1/ans2)+0.636619772*bessj0(x)*log(x);
   } else {
      z=8.0/x;
      y=z*z;
      xx=x-0.785398164;
      ans1=1.0+y*(-0.1098628627e-2+y*(0.2734510407e-4
         +y*(-0.2073370639e-5+y*0.2093887211e-6)));
      ans2 = -0.1562499995e-1+y*(0.1430488765e-3
         +y*(-0.6911147651e-5+y*(0.7621095161e-6
         +y*(-0.934945152e-7))));
      ans=sqrt(0.636619772/x)*(sin(xx)*ans1+z*cos(xx)*ans2);
   }
   return ans;
}

static double bessy1( double x )
{
   double z;
   double xx,y,ans,ans1,ans2;

   if (x < 8.0) {
      y=x*x;
      ans1=x*(-0.4900604943e13+y*(0.1275274390e13
         +y*(-0.5153438139e11+y*(0.7349264551e9
         +y*(-0.4237922726e7+y*0.8511937935e4)))));
      ans2=0.2499580570e14+y*(0.4244419664e12
         +y*(0.3733650367e10+y*(0.2245904002e8
         +y*(0.1020426050e6+y*(0.3549632885e3+y)))));
      ans=(ans1/ans2)+0.636619772*(bessj1(x)*log(x)-1.0/x);
   } else {
      z=8.0/x;
      y=z*z;
      xx=x-2.356194491;
      ans1=1.0+y*(0.183105e-2+y*(-0.3516396496e-4
         +y*(0.2457520174e-5+y*(-0.240337019e-6))));
      ans2=0.04687499995+y*(-0.2002690873e-3
         +y*(0.8449199096e-5+y*(-0.88228987e-6
         +y*0.105787412e-6)));
      ans=sqrt(0.636619772/x)*(sin(xx)*ans1+z*cos(xx)*ans2);
   }
   return ans;
}

double bessy( int n, double x )
{
   int j;
   double by,bym,byp,tox;


   if (n < 0 || x == 0.0)
   {
      double   dblank;
      return( dblank );
   }
   if (n == 0)
      return( bessy0(x) );
   if (n == 1)
      return( bessy1(x) );

   tox=2.0/x;
   by=bessy1(x);
   bym=bessy0(x);
   for (j=1;j<n;j++) {
      byp=j*tox*by-bym;
      bym=by;
      by=byp;
   }
   return by;
}

void dbesselya(double* inp1,int size1, double* inp2,int size2, double* oup)
{
    int i;
    if(size1 != size2)
        printf("Error! arguments #1 and #2 have incompatible dimensions.");
    for(i = 0; i<size1;i++)
    {
        oup[i] = bessy(inp1[i],inp2[i]);
    }
}