1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
/*
* Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
* Copyright (C) 2008 - INRIA - Allan SIMON
*
* This file must be used under the terms of the CeCILL.
* This source file is licensed as described in the file COPYING, which
* you should have received as part of this distribution. The terms
* are also available at
* http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
*
*/
#include "ifft_internal.h"
#include <math.h>
/*
** radix 8 iteration subroutine
*/
/* this function do in one turn the same computation that do radix 2 in three turns */
void ir8tx ( int nxtlt,int nthpo,int lengt,
doubleComplex* cc0,doubleComplex* cc1,doubleComplex* cc2,doubleComplex* cc3,
doubleComplex* cc4,doubleComplex* cc5,doubleComplex* cc6,doubleComplex* cc7)
{
int j , kk;
double dblP7 = 1 / sqrt(2.0) ;
double dblPi2 = 8 * atan(1.0);
double scale, arg;
double c1,c2,c3,c4,c5,c6,c7;
double s1,s2,s3,s4,s5,s6,s7;
doubleComplex Atemp0,Atemp1,Atemp2,Atemp3,Atemp4,Atemp5,Atemp6,Atemp7;
doubleComplex Btemp0,Btemp1,Btemp2,Btemp3,Btemp4,Btemp5,Btemp6,Btemp7;
doubleComplex temp ;
scale = dblPi2/lengt;
for(j=0;j<nxtlt;j++)
{
arg = j*scale;
c1 = cos(arg);
s1 = sin(arg);
c2 = c1*c1 - s1*s1;
s2 = c1*s1 + c1*s1;
c3 = c1*c2 - s1*s2;
s3 = c2*s1 + s2*c1;
c4 = c2*c2 - s2*s2;
s4 = c2*s2 + c2*s2;
c5 = c2*c3 - s2*s3;
s5 = c3*s2 + s3*c2;
c6 = c3*c3 - s3*s3;
s6 = c3*s3 + c3*s3;
c7 = c3*c4 - s3*s4;
s7 = c4*s3 + s4*c3;
for(kk=j;kk<nthpo;kk+=lengt)
{
/* (k-1)*2*/ /* index by twos; re & im alternate */
/* first turn the same as calling radix 2 with the input vector */
/* but radix2 will have do it in three turn , radix8 do it in one */
Atemp0 = zadds ( cc0[kk] , cc4[kk] ) ;
Atemp1 = zadds ( cc1[kk] , cc5[kk] ) ;
Atemp2 = zadds ( cc2[kk] , cc6[kk] ) ;
Atemp3 = zadds ( cc3[kk] , cc7[kk] ) ;
Atemp4 = zdiffs ( cc0[kk] , cc4[kk] ) ;
Atemp5 = zdiffs ( cc1[kk] , cc5[kk] ) ;
Atemp6 = zdiffs ( cc2[kk] , cc6[kk] ) ;
Atemp7 = zdiffs ( cc3[kk] , cc7[kk] ) ;
/* second turn the same as calling radix 2 with the vector transformed by a previous call of radix2 */
/* the same here , three turns in one */
Btemp0 = zadds ( Atemp0 , Atemp2 ) ;
Btemp1 = zadds ( Atemp1 , Atemp3 ) ;
Btemp2 = zdiffs ( Atemp0 , Atemp2 ) ;
Btemp3 = zdiffs ( Atemp1 , Atemp3 ) ;
Btemp4 = DoubleComplex ( zreals ( Atemp4 ) - zimags( Atemp6 ) , zimags ( Atemp4 ) + zreals( Atemp6 ) );
Btemp5 = DoubleComplex ( zreals ( Atemp5 ) - zimags( Atemp7 ) , zimags ( Atemp5 ) + zreals( Atemp7 ) );
Btemp6 = DoubleComplex ( zreals ( Atemp4 ) + zimags( Atemp6 ) , zimags ( Atemp4 ) - zreals( Atemp6 ) );
Btemp7 = DoubleComplex ( zreals ( Atemp5 ) + zimags( Atemp7 ) , zimags ( Atemp5 ) - zreals( Atemp7 ) );
/*third turn the same as calling radix 2 with the vector transformed by two previous call of radix2 */
cc0[kk] = zadds ( Btemp0 , Btemp1 );
/* if we are not in the first turn */
if(j>0)
{
cc1[kk] = DoubleComplex ( (c4 * (zreals(Btemp0) - zreals(Btemp1))) - (s4 * (zimags(Btemp0) - zimags(Btemp1))),
c4 * (zimags(Btemp0) - zimags(Btemp1)) + s4 * (zreals(Btemp0) - zreals(Btemp1)));
cc2[kk] = DoubleComplex ( c2 * (zreals(Btemp2) - zimags(Btemp3)) - s2 * (zimags(Btemp2) + zreals(Btemp3)) ,
c2 * (zimags(Btemp2) + zreals(Btemp3)) + s2 * (zreals(Btemp2) - zimags(Btemp3)));
cc3[kk] = DoubleComplex ( c6 * (zreals(Btemp2) + zimags(Btemp3)) - s6 * (zimags(Btemp2) - zreals(Btemp3)) ,
c6 * (zimags(Btemp2) - zreals(Btemp3)) + s6 * (zreals(Btemp2) + zimags(Btemp3)));
temp = DoubleComplex ( dblP7*(zreals ( Btemp5 ) - zimags( Btemp5 )) ,
dblP7*(zreals ( Btemp5 ) + zimags( Btemp5 )) );
cc4[kk] = DoubleComplex ( c1 * (zreals (Btemp4) + zreals(temp)) - s1 * (zimags (Btemp4) + zimags(temp)) ,
c1 * (zimags (Btemp4) + zimags(temp)) + s1 * (zreals (Btemp4) + zreals(temp)));
cc5[kk] = DoubleComplex ( c5 * (zreals (Btemp4) - zreals(temp)) - s5 * (zimags (Btemp4) - zimags(temp)) ,
c5 * (zimags (Btemp4) - zimags(temp)) + s5 * (zreals (Btemp4) - zreals(temp)));
temp = DoubleComplex ( - dblP7*(zreals ( Btemp7 ) + zimags( Btemp7 )) ,
dblP7*(zreals ( Btemp7 ) - zimags( Btemp7 )) );
cc6[kk] = DoubleComplex ( c3 * (zreals (Btemp6) + zreals(temp)) - s3 * (zimags (Btemp6) + zimags(temp)) ,
c3 * (zimags (Btemp6) + zimags(temp)) + s3 * (zreals (Btemp6) + zreals(temp)));
cc7[kk] = DoubleComplex ( c7 * (zreals (Btemp6) - zreals(temp)) - s7 * (zimags (Btemp6) - zimags(temp)) ,
c7 * (zimags (Btemp6) - zimags(temp)) + s7 * (zreals (Btemp6) - zreals(temp)));
}
else
{
cc1[kk] = zdiffs ( Btemp0 , Btemp1 );
cc2[kk] = DoubleComplex ( zreals ( Btemp2 ) - zimags( Btemp3 ) ,
zimags ( Btemp2 ) + zreals( Btemp3 ) );
cc3[kk] = DoubleComplex ( zreals ( Btemp2 ) + zimags( Btemp3 ) ,
zimags ( Btemp2 ) - zreals( Btemp3 ) );
temp = DoubleComplex ( dblP7*(zreals ( Btemp5 ) - zimags( Btemp5 )) ,
dblP7*(zreals ( Btemp5 ) + zimags( Btemp5 )) );
cc4[kk] = zadds ( Btemp4 , temp );
cc5[kk] = zdiffs ( Btemp4 , temp );
temp = DoubleComplex ( - dblP7*(zreals ( Btemp7 ) + zimags( Btemp7 )) ,
dblP7*(zreals ( Btemp7 ) - zimags( Btemp7 )) );
cc6[kk] = zadds ( Btemp6 , temp );
cc7[kk] = zdiffs ( Btemp6 , temp );
}
}
}
}
|