summaryrefslogtreecommitdiff
path: root/src/c/elementaryFunctions/asin/zasins.c
blob: 5bd586a85d18f89fb1a391d5cbdb2fbb637c7767 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
/*
 *  Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
 *  Copyright (C) 2007-2008 - INRIA - Bruno JOFRET
 *  Copyright (C) Bruno Pincon
 *
 *  This file must be used under the terms of the CeCILL.
 *  This source file is licensed as described in the file COPYING, which
 *  you should have received as part of this distribution.  The terms
 *  are also available at
 *  http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
 *
 */

/*
 *     REFERENCE
 *        This is a Fortran-77 translation of an algorithm by
 *        T.E. Hull, T. F. Fairgrieve and P.T.P. Tang which
 *        appears in their article :
 *          "Implementing the Complex Arcsine and Arccosine
 *           Functions Using Exception Handling", ACM, TOMS,
 *           Vol 23, No. 3, Sept 1997, p. 299-335
 *     Thanks to Tom Fairgrieve
 */

#include "lapack.h"
#include "asin.h"
#include "atan.h"
#include "sqrt.h"
#include "abs.h"
#include "log.h"
#include "log1p.h"
#include "min.h"
#include "max.h"

doubleComplex		zasins(doubleComplex z) {
  static double sdblPi_2	= 1.5707963267948966192313216;
  static double sdblLn2		= 0.6931471805599453094172321;
  static double sdblAcross	= 1.5;
  static double sdblBcross	= 0.6417;

  double dblLsup = dsqrts(getOverflowThreshold())/8.0;
  double dblLinf = 4 * dsqrts(getUnderflowThreshold());
  double dblEpsm = dsqrts(getRelativeMachinePrecision());

  double _dblReal	= zreals(z);
  double _dblImg	= zimags(z);

  double dblAbsReal	= dabss(_dblReal);
  double dblAbsImg	= dabss(_dblImg);
  int iSignReal		= _dblReal < 0 ? -1 : 1;
  int iSignImg		= _dblImg < 0 ? -1 : 1;

  double dblR = 0, dblS = 0, dblA = 0, dblB = 0;

  double dblTemp = 0;

  double _pdblReal = 0;
  double _pdblImg = 0;

  if( min(dblAbsReal, dblAbsImg) > dblLinf && max(dblAbsReal, dblAbsImg) <= dblLsup)
    {
      /* we are in the safe region */
      dblR = dsqrts( (dblAbsReal + 1) * (dblAbsReal + 1) + dblAbsImg * dblAbsImg);
      dblS = dsqrts( (dblAbsReal - 1) * (dblAbsReal - 1) + dblAbsImg * dblAbsImg);
      dblA = 0.5 * ( dblR + dblS );
      dblB = dblAbsReal / dblA;


      /* compute the real part */
      if(dblB <= sdblBcross)
	_pdblReal = dasins(dblB);
      else if( dblAbsReal <= 1)
	_pdblReal = datans(dblAbsReal / dsqrts( 0.5 * (dblA + dblAbsReal) * ( (dblAbsImg * dblAbsImg) / (dblR + (dblAbsReal + 1)) + (dblS + (1 - dblAbsReal)))));
      else
	_pdblReal = datans(dblAbsReal / (dblAbsImg * dsqrts(0.5 * ((dblA + dblAbsReal) / (dblR + (dblAbsReal + 1)) + (dblA + dblAbsReal) / (dblS + (dblAbsReal-1))))));

      /* compute the imaginary part */
      if(dblA <= sdblAcross)
	{
	  double dblImg1 = 0;

	  if(dblAbsReal < 1)
	    /* Am1 = 0.5d0*((y**2)/(R+(x+1.d0))+(y**2)/(S+(1.d0-x))) */
	    dblImg1 = 0.5 * (dblAbsImg * dblAbsImg / (dblR + (dblAbsReal + 1)) + dblAbsImg * dblAbsImg / (dblS + (1 - dblAbsReal)));
	  else
	    /* Am1 = 0.5d0*((y**2)/(R+(x+1.d0))+(S+(x-1.d0))) */
	    dblImg1 = 0.5 * (dblAbsImg * dblAbsImg / (dblR + (dblAbsReal + 1)) + (dblS + (dblAbsReal - 1)));
	  /* ai = logp1(Am1 + sqrt(Am1*(A+1.d0))) */
	  dblTemp = dblImg1 + dsqrts(dblImg1 * (dblA + 1));
	  _pdblImg = dlog1ps(dblTemp);
	}
      else
	/* ai = log(A + sqrt(A**2 - 1.d0)) */
	_pdblImg = dlogs(dblA + dsqrts(dblA * dblA - 1));
    }
  else
    {
      /* evaluation in the special regions ... */
      if(dblAbsImg <= dblEpsm * dabss(dblAbsReal - 1))
	{
	  if(dblAbsReal < 1)
	    {
	      _pdblReal	= dasins(dblAbsReal);
	      _pdblImg	= dblAbsImg / dsqrts((1 + dblAbsReal) * (1 - dblAbsReal));
	    }
	  else
	    {
	      _pdblReal = sdblPi_2;
	      if(dblAbsReal <= dblLsup)
		{
		  dblTemp		= (dblAbsReal - 1) + dsqrts((dblAbsReal - 1) * (dblAbsReal + 1));
		  _pdblImg	= dlog1ps(dblTemp);
		}
	      else
		_pdblImg	= sdblLn2 + dlogs(dblAbsReal);
	    }
	}
      else if(dblAbsImg < dblLinf)
	{
	  _pdblReal	= sdblPi_2 - dsqrts(dblAbsImg);
	  _pdblImg	= dsqrts(dblAbsImg);
	}
      else if((dblEpsm * dblAbsImg - 1 >= dblAbsReal))
	{
	  _pdblReal	= dblAbsReal * dblAbsImg;
	  _pdblImg	= sdblLn2 + dlogs(dblAbsReal);
	}
      else if(dblAbsReal > 1)
	{
	  _pdblReal	= datans(dblAbsReal / dblAbsImg);
	  dblTemp		= (dblAbsReal / dblAbsImg) * (dblAbsReal / dblAbsImg);
	  _pdblImg	= sdblLn2 + dlogs(dblAbsReal) + 0.5 * dlog1ps(dblTemp);
	}
      else
	{
	  double dblTemp2 = dsqrts(1 + dblAbsImg * dblAbsImg);
	  _pdblReal	= dblAbsReal / dblTemp2;
	  dblTemp		= 2 * dblAbsImg * (dblAbsImg + dblTemp2);
	  _pdblImg	= 0.5 * dlog1ps(dblTemp);
	}
    }
  _pdblReal *= iSignReal;
  _pdblImg *= iSignImg;

  return (DoubleComplex(_pdblReal, _pdblImg));
}