1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
|
<?xml version="1.0" encoding="UTF-8"?>
<!--
*
* This help file was generated from CV_AdaptiveThreshold.sci using help_from_sci().
*
-->
<refentry version="5.0-subset Scilab" xml:id="CV_AdaptiveThreshold" xml:lang="en"
xmlns="http://docbook.org/ns/docbook"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns:ns3="http://www.w3.org/1999/xhtml"
xmlns:mml="http://www.w3.org/1998/Math/MathML"
xmlns:scilab="http://www.scilab.org"
xmlns:db="http://docbook.org/ns/docbook">
<refnamediv>
<refname>CV_AdaptiveThreshold</refname>
<refpurpose>function to adaptively threshold input image</refpurpose>
</refnamediv>
<refsynopsisdiv>
<title>Calling Sequence</title>
<synopsis>
dst = CV_AdaptiveThreshold(srcimg,max_value,adaptive_method,thresh_type,blk_size,c)
</synopsis>
</refsynopsisdiv>
<refsection>
<title>Parameters</title>
<variablelist>
<varlistentry><term>src :</term>
<listitem><para> Source 8-bit single-channel image.</para></listitem></varlistentry>
<varlistentry><term>max_value :</term>
<listitem><para> Non-zero value assigned to the pixels for which the condition is satisfied. See the details below.</para></listitem></varlistentry>
<varlistentry><term>adaptive_method :</term>
<listitem><para> Adaptive thresholding algorithm to use, ADAPTIVE_THRESH_MEAN_C or ADAPTIVE_THRESH_GAUSSIAN_C .</para></listitem></varlistentry>
<varlistentry><term>thresh_type :</term>
<listitem><para> Thresholding type that must be either THRESH_BINARY or THRESH_BINARY_INV .</para></listitem></varlistentry>
<varlistentry><term>blockSize :</term>
<listitem><para> Size of a pixel neighborhood that is used to calculate a threshold value for the pixel: 3, 5, 7, and so on.</para></listitem></varlistentry>
<varlistentry><term>C :</term>
<listitem><para> Constant subtracted from the mean or weighted mean.Normally, it is positive but may be zero or negative as well.</para></listitem></varlistentry>
</variablelist>
</refsection>
<refsection>
<title>Description</title>
<para>
This function can be used for adaptively threshold given image
</para>
<para>
This is curretly dummy function. It provides no functionality but is required
for providing support for generating C code for OpenCV
</para>
<para>
</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting role="example"><![CDATA[
img = CV_LoadImage('~/test.jpg',0)
dst = CV_AdaptiveThreshold(img,255,"ADAPTIVE_THRESH_MEAN_C", ...
"THRESH_BINARY",5,0)
]]></programlisting>
</refsection>
<refsection>
<title>See also</title>
<simplelist type="inline">
<member><link linkend="CV_LoadImage">CV_CreateImage</link></member>
</simplelist>
</refsection>
<refsection>
<title>Authors</title>
<simplelist type="vert">
<member>Siddhesh Wani</member>
</simplelist>
</refsection>
</refentry>
|