summaryrefslogtreecommitdiff
path: root/thirdparty/raspberrypi/includes/opencv2/flann/lsh_index.h
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/raspberrypi/includes/opencv2/flann/lsh_index.h')
-rw-r--r--thirdparty/raspberrypi/includes/opencv2/flann/lsh_index.h420
1 files changed, 0 insertions, 420 deletions
diff --git a/thirdparty/raspberrypi/includes/opencv2/flann/lsh_index.h b/thirdparty/raspberrypi/includes/opencv2/flann/lsh_index.h
deleted file mode 100644
index 2b89337..0000000
--- a/thirdparty/raspberrypi/includes/opencv2/flann/lsh_index.h
+++ /dev/null
@@ -1,420 +0,0 @@
-/***********************************************************************
- * Software License Agreement (BSD License)
- *
- * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
- * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
- *
- * THE BSD LICENSE
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
- * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
- * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
- * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *************************************************************************/
-
-/***********************************************************************
- * Author: Vincent Rabaud
- *************************************************************************/
-
-#ifndef OPENCV_FLANN_LSH_INDEX_H_
-#define OPENCV_FLANN_LSH_INDEX_H_
-
-#include <algorithm>
-#include <cassert>
-#include <cstring>
-#include <map>
-#include <vector>
-
-#include "general.h"
-#include "nn_index.h"
-#include "matrix.h"
-#include "result_set.h"
-#include "heap.h"
-#include "lsh_table.h"
-#include "allocator.h"
-#include "random.h"
-#include "saving.h"
-
-namespace cvflann
-{
-
-struct LshIndexParams : public IndexParams
-{
- LshIndexParams(unsigned int table_number = 12, unsigned int key_size = 20, unsigned int multi_probe_level = 2)
- {
- (* this)["algorithm"] = FLANN_INDEX_LSH;
- // The number of hash tables to use
- (*this)["table_number"] = table_number;
- // The length of the key in the hash tables
- (*this)["key_size"] = key_size;
- // Number of levels to use in multi-probe (0 for standard LSH)
- (*this)["multi_probe_level"] = multi_probe_level;
- }
-};
-
-/**
- * Randomized kd-tree index
- *
- * Contains the k-d trees and other information for indexing a set of points
- * for nearest-neighbor matching.
- */
-template<typename Distance>
-class LshIndex : public NNIndex<Distance>
-{
-public:
- typedef typename Distance::ElementType ElementType;
- typedef typename Distance::ResultType DistanceType;
-
- /** Constructor
- * @param input_data dataset with the input features
- * @param params parameters passed to the LSH algorithm
- * @param d the distance used
- */
- LshIndex(const Matrix<ElementType>& input_data, const IndexParams& params = LshIndexParams(),
- Distance d = Distance()) :
- dataset_(input_data), index_params_(params), distance_(d)
- {
- // cv::flann::IndexParams sets integer params as 'int', so it is used with get_param
- // in place of 'unsigned int'
- table_number_ = (unsigned int)get_param<int>(index_params_,"table_number",12);
- key_size_ = (unsigned int)get_param<int>(index_params_,"key_size",20);
- multi_probe_level_ = (unsigned int)get_param<int>(index_params_,"multi_probe_level",2);
-
- feature_size_ = (unsigned)dataset_.cols;
- fill_xor_mask(0, key_size_, multi_probe_level_, xor_masks_);
- }
-
-
- LshIndex(const LshIndex&);
- LshIndex& operator=(const LshIndex&);
-
- /**
- * Implementation for the LSH addable indexes after that.
- * @param wholeData whole dataset with the input features
- * @param additionalData additional dataset with the input features
- */
- void addIndex(const Matrix<ElementType>& wholeData, const Matrix<ElementType>& additionalData)
- {
- tables_.resize(table_number_);
- for (unsigned int i = 0; i < table_number_; ++i) {
- lsh::LshTable<ElementType>& table = tables_[i];
- // Add the features to the table with indexed offset
- table.add((int)(wholeData.rows - additionalData.rows), additionalData);
- }
- dataset_ = wholeData;
- }
-
- /**
- * Builds the index
- */
- void buildIndex()
- {
- std::vector<size_t> indices(feature_size_ * CHAR_BIT);
-
- tables_.resize(table_number_);
- for (unsigned int i = 0; i < table_number_; ++i) {
-
- //re-initialize the random indices table that the LshTable will use to pick its sub-dimensions
- if( (indices.size() == feature_size_ * CHAR_BIT) || (indices.size() < key_size_) )
- {
- indices.resize( feature_size_ * CHAR_BIT );
- for (size_t j = 0; j < feature_size_ * CHAR_BIT; ++j)
- indices[j] = j;
- std::random_shuffle(indices.begin(), indices.end());
- }
-
- lsh::LshTable<ElementType>& table = tables_[i];
- table = lsh::LshTable<ElementType>(feature_size_, key_size_, indices);
-
- // Add the features to the table with offset 0
- table.add(0, dataset_);
- }
- }
-
- flann_algorithm_t getType() const
- {
- return FLANN_INDEX_LSH;
- }
-
-
- void saveIndex(FILE* stream)
- {
- save_value(stream,table_number_);
- save_value(stream,key_size_);
- save_value(stream,multi_probe_level_);
- save_value(stream, dataset_);
- }
-
- void loadIndex(FILE* stream)
- {
- load_value(stream, table_number_);
- load_value(stream, key_size_);
- load_value(stream, multi_probe_level_);
- load_value(stream, dataset_);
- // Building the index is so fast we can afford not storing it
- buildIndex();
-
- index_params_["algorithm"] = getType();
- index_params_["table_number"] = table_number_;
- index_params_["key_size"] = key_size_;
- index_params_["multi_probe_level"] = multi_probe_level_;
- }
-
- /**
- * Returns size of index.
- */
- size_t size() const
- {
- return dataset_.rows;
- }
-
- /**
- * Returns the length of an index feature.
- */
- size_t veclen() const
- {
- return feature_size_;
- }
-
- /**
- * Computes the index memory usage
- * Returns: memory used by the index
- */
- int usedMemory() const
- {
- return (int)(dataset_.rows * sizeof(int));
- }
-
-
- IndexParams getParameters() const
- {
- return index_params_;
- }
-
- /**
- * \brief Perform k-nearest neighbor search
- * \param[in] queries The query points for which to find the nearest neighbors
- * \param[out] indices The indices of the nearest neighbors found
- * \param[out] dists Distances to the nearest neighbors found
- * \param[in] knn Number of nearest neighbors to return
- * \param[in] params Search parameters
- */
- virtual void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params)
- {
- assert(queries.cols == veclen());
- assert(indices.rows >= queries.rows);
- assert(dists.rows >= queries.rows);
- assert(int(indices.cols) >= knn);
- assert(int(dists.cols) >= knn);
-
-
- KNNUniqueResultSet<DistanceType> resultSet(knn);
- for (size_t i = 0; i < queries.rows; i++) {
- resultSet.clear();
- std::fill_n(indices[i], knn, -1);
- std::fill_n(dists[i], knn, std::numeric_limits<DistanceType>::max());
- findNeighbors(resultSet, queries[i], params);
- if (get_param(params,"sorted",true)) resultSet.sortAndCopy(indices[i], dists[i], knn);
- else resultSet.copy(indices[i], dists[i], knn);
- }
- }
-
-
- /**
- * Find set of nearest neighbors to vec. Their indices are stored inside
- * the result object.
- *
- * Params:
- * result = the result object in which the indices of the nearest-neighbors are stored
- * vec = the vector for which to search the nearest neighbors
- * maxCheck = the maximum number of restarts (in a best-bin-first manner)
- */
- void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& /*searchParams*/)
- {
- getNeighbors(vec, result);
- }
-
-private:
- /** Defines the comparator on score and index
- */
- typedef std::pair<float, unsigned int> ScoreIndexPair;
- struct SortScoreIndexPairOnSecond
- {
- bool operator()(const ScoreIndexPair& left, const ScoreIndexPair& right) const
- {
- return left.second < right.second;
- }
- };
-
- /** Fills the different xor masks to use when getting the neighbors in multi-probe LSH
- * @param key the key we build neighbors from
- * @param lowest_index the lowest index of the bit set
- * @param level the multi-probe level we are at
- * @param xor_masks all the xor mask
- */
- void fill_xor_mask(lsh::BucketKey key, int lowest_index, unsigned int level,
- std::vector<lsh::BucketKey>& xor_masks)
- {
- xor_masks.push_back(key);
- if (level == 0) return;
- for (int index = lowest_index - 1; index >= 0; --index) {
- // Create a new key
- lsh::BucketKey new_key = key | (1 << index);
- fill_xor_mask(new_key, index, level - 1, xor_masks);
- }
- }
-
- /** Performs the approximate nearest-neighbor search.
- * @param vec the feature to analyze
- * @param do_radius flag indicating if we check the radius too
- * @param radius the radius if it is a radius search
- * @param do_k flag indicating if we limit the number of nn
- * @param k_nn the number of nearest neighbors
- * @param checked_average used for debugging
- */
- void getNeighbors(const ElementType* vec, bool /*do_radius*/, float radius, bool do_k, unsigned int k_nn,
- float& /*checked_average*/)
- {
- static std::vector<ScoreIndexPair> score_index_heap;
-
- if (do_k) {
- unsigned int worst_score = std::numeric_limits<unsigned int>::max();
- typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin();
- typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end();
- for (; table != table_end; ++table) {
- size_t key = table->getKey(vec);
- std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin();
- std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end();
- for (; xor_mask != xor_mask_end; ++xor_mask) {
- size_t sub_key = key ^ (*xor_mask);
- const lsh::Bucket* bucket = table->getBucketFromKey(sub_key);
- if (bucket == 0) continue;
-
- // Go over each descriptor index
- std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin();
- std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end();
- DistanceType hamming_distance;
-
- // Process the rest of the candidates
- for (; training_index < last_training_index; ++training_index) {
- hamming_distance = distance_(vec, dataset_[*training_index], dataset_.cols);
-
- if (hamming_distance < worst_score) {
- // Insert the new element
- score_index_heap.push_back(ScoreIndexPair(hamming_distance, training_index));
- std::push_heap(score_index_heap.begin(), score_index_heap.end());
-
- if (score_index_heap.size() > (unsigned int)k_nn) {
- // Remove the highest distance value as we have too many elements
- std::pop_heap(score_index_heap.begin(), score_index_heap.end());
- score_index_heap.pop_back();
- // Keep track of the worst score
- worst_score = score_index_heap.front().first;
- }
- }
- }
- }
- }
- }
- else {
- typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin();
- typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end();
- for (; table != table_end; ++table) {
- size_t key = table->getKey(vec);
- std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin();
- std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end();
- for (; xor_mask != xor_mask_end; ++xor_mask) {
- size_t sub_key = key ^ (*xor_mask);
- const lsh::Bucket* bucket = table->getBucketFromKey(sub_key);
- if (bucket == 0) continue;
-
- // Go over each descriptor index
- std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin();
- std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end();
- DistanceType hamming_distance;
-
- // Process the rest of the candidates
- for (; training_index < last_training_index; ++training_index) {
- // Compute the Hamming distance
- hamming_distance = distance_(vec, dataset_[*training_index], dataset_.cols);
- if (hamming_distance < radius) score_index_heap.push_back(ScoreIndexPair(hamming_distance, training_index));
- }
- }
- }
- }
- }
-
- /** Performs the approximate nearest-neighbor search.
- * This is a slower version than the above as it uses the ResultSet
- * @param vec the feature to analyze
- */
- void getNeighbors(const ElementType* vec, ResultSet<DistanceType>& result)
- {
- typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin();
- typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end();
- for (; table != table_end; ++table) {
- size_t key = table->getKey(vec);
- std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin();
- std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end();
- for (; xor_mask != xor_mask_end; ++xor_mask) {
- size_t sub_key = key ^ (*xor_mask);
- const lsh::Bucket* bucket = table->getBucketFromKey((lsh::BucketKey)sub_key);
- if (bucket == 0) continue;
-
- // Go over each descriptor index
- std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin();
- std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end();
- DistanceType hamming_distance;
-
- // Process the rest of the candidates
- for (; training_index < last_training_index; ++training_index) {
- // Compute the Hamming distance
- hamming_distance = distance_(vec, dataset_[*training_index], (int)dataset_.cols);
- result.addPoint(hamming_distance, *training_index);
- }
- }
- }
- }
-
- /** The different hash tables */
- std::vector<lsh::LshTable<ElementType> > tables_;
-
- /** The data the LSH tables where built from */
- Matrix<ElementType> dataset_;
-
- /** The size of the features (as ElementType[]) */
- unsigned int feature_size_;
-
- IndexParams index_params_;
-
- /** table number */
- unsigned int table_number_;
- /** key size */
- unsigned int key_size_;
- /** How far should we look for neighbors in multi-probe LSH */
- unsigned int multi_probe_level_;
-
- /** The XOR masks to apply to a key to get the neighboring buckets */
- std::vector<lsh::BucketKey> xor_masks_;
-
- Distance distance_;
-};
-}
-
-#endif //OPENCV_FLANN_LSH_INDEX_H_