diff options
Diffstat (limited to 'thirdparty/raspberrypi/includes/opencv2/flann/lsh_index.h')
-rw-r--r-- | thirdparty/raspberrypi/includes/opencv2/flann/lsh_index.h | 420 |
1 files changed, 0 insertions, 420 deletions
diff --git a/thirdparty/raspberrypi/includes/opencv2/flann/lsh_index.h b/thirdparty/raspberrypi/includes/opencv2/flann/lsh_index.h deleted file mode 100644 index 2b89337..0000000 --- a/thirdparty/raspberrypi/includes/opencv2/flann/lsh_index.h +++ /dev/null @@ -1,420 +0,0 @@ -/*********************************************************************** - * Software License Agreement (BSD License) - * - * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. - * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. - * - * THE BSD LICENSE - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * - * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR - * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES - * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. - * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, - * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT - * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, - * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY - * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF - * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - *************************************************************************/ - -/*********************************************************************** - * Author: Vincent Rabaud - *************************************************************************/ - -#ifndef OPENCV_FLANN_LSH_INDEX_H_ -#define OPENCV_FLANN_LSH_INDEX_H_ - -#include <algorithm> -#include <cassert> -#include <cstring> -#include <map> -#include <vector> - -#include "general.h" -#include "nn_index.h" -#include "matrix.h" -#include "result_set.h" -#include "heap.h" -#include "lsh_table.h" -#include "allocator.h" -#include "random.h" -#include "saving.h" - -namespace cvflann -{ - -struct LshIndexParams : public IndexParams -{ - LshIndexParams(unsigned int table_number = 12, unsigned int key_size = 20, unsigned int multi_probe_level = 2) - { - (* this)["algorithm"] = FLANN_INDEX_LSH; - // The number of hash tables to use - (*this)["table_number"] = table_number; - // The length of the key in the hash tables - (*this)["key_size"] = key_size; - // Number of levels to use in multi-probe (0 for standard LSH) - (*this)["multi_probe_level"] = multi_probe_level; - } -}; - -/** - * Randomized kd-tree index - * - * Contains the k-d trees and other information for indexing a set of points - * for nearest-neighbor matching. - */ -template<typename Distance> -class LshIndex : public NNIndex<Distance> -{ -public: - typedef typename Distance::ElementType ElementType; - typedef typename Distance::ResultType DistanceType; - - /** Constructor - * @param input_data dataset with the input features - * @param params parameters passed to the LSH algorithm - * @param d the distance used - */ - LshIndex(const Matrix<ElementType>& input_data, const IndexParams& params = LshIndexParams(), - Distance d = Distance()) : - dataset_(input_data), index_params_(params), distance_(d) - { - // cv::flann::IndexParams sets integer params as 'int', so it is used with get_param - // in place of 'unsigned int' - table_number_ = (unsigned int)get_param<int>(index_params_,"table_number",12); - key_size_ = (unsigned int)get_param<int>(index_params_,"key_size",20); - multi_probe_level_ = (unsigned int)get_param<int>(index_params_,"multi_probe_level",2); - - feature_size_ = (unsigned)dataset_.cols; - fill_xor_mask(0, key_size_, multi_probe_level_, xor_masks_); - } - - - LshIndex(const LshIndex&); - LshIndex& operator=(const LshIndex&); - - /** - * Implementation for the LSH addable indexes after that. - * @param wholeData whole dataset with the input features - * @param additionalData additional dataset with the input features - */ - void addIndex(const Matrix<ElementType>& wholeData, const Matrix<ElementType>& additionalData) - { - tables_.resize(table_number_); - for (unsigned int i = 0; i < table_number_; ++i) { - lsh::LshTable<ElementType>& table = tables_[i]; - // Add the features to the table with indexed offset - table.add((int)(wholeData.rows - additionalData.rows), additionalData); - } - dataset_ = wholeData; - } - - /** - * Builds the index - */ - void buildIndex() - { - std::vector<size_t> indices(feature_size_ * CHAR_BIT); - - tables_.resize(table_number_); - for (unsigned int i = 0; i < table_number_; ++i) { - - //re-initialize the random indices table that the LshTable will use to pick its sub-dimensions - if( (indices.size() == feature_size_ * CHAR_BIT) || (indices.size() < key_size_) ) - { - indices.resize( feature_size_ * CHAR_BIT ); - for (size_t j = 0; j < feature_size_ * CHAR_BIT; ++j) - indices[j] = j; - std::random_shuffle(indices.begin(), indices.end()); - } - - lsh::LshTable<ElementType>& table = tables_[i]; - table = lsh::LshTable<ElementType>(feature_size_, key_size_, indices); - - // Add the features to the table with offset 0 - table.add(0, dataset_); - } - } - - flann_algorithm_t getType() const - { - return FLANN_INDEX_LSH; - } - - - void saveIndex(FILE* stream) - { - save_value(stream,table_number_); - save_value(stream,key_size_); - save_value(stream,multi_probe_level_); - save_value(stream, dataset_); - } - - void loadIndex(FILE* stream) - { - load_value(stream, table_number_); - load_value(stream, key_size_); - load_value(stream, multi_probe_level_); - load_value(stream, dataset_); - // Building the index is so fast we can afford not storing it - buildIndex(); - - index_params_["algorithm"] = getType(); - index_params_["table_number"] = table_number_; - index_params_["key_size"] = key_size_; - index_params_["multi_probe_level"] = multi_probe_level_; - } - - /** - * Returns size of index. - */ - size_t size() const - { - return dataset_.rows; - } - - /** - * Returns the length of an index feature. - */ - size_t veclen() const - { - return feature_size_; - } - - /** - * Computes the index memory usage - * Returns: memory used by the index - */ - int usedMemory() const - { - return (int)(dataset_.rows * sizeof(int)); - } - - - IndexParams getParameters() const - { - return index_params_; - } - - /** - * \brief Perform k-nearest neighbor search - * \param[in] queries The query points for which to find the nearest neighbors - * \param[out] indices The indices of the nearest neighbors found - * \param[out] dists Distances to the nearest neighbors found - * \param[in] knn Number of nearest neighbors to return - * \param[in] params Search parameters - */ - virtual void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params) - { - assert(queries.cols == veclen()); - assert(indices.rows >= queries.rows); - assert(dists.rows >= queries.rows); - assert(int(indices.cols) >= knn); - assert(int(dists.cols) >= knn); - - - KNNUniqueResultSet<DistanceType> resultSet(knn); - for (size_t i = 0; i < queries.rows; i++) { - resultSet.clear(); - std::fill_n(indices[i], knn, -1); - std::fill_n(dists[i], knn, std::numeric_limits<DistanceType>::max()); - findNeighbors(resultSet, queries[i], params); - if (get_param(params,"sorted",true)) resultSet.sortAndCopy(indices[i], dists[i], knn); - else resultSet.copy(indices[i], dists[i], knn); - } - } - - - /** - * Find set of nearest neighbors to vec. Their indices are stored inside - * the result object. - * - * Params: - * result = the result object in which the indices of the nearest-neighbors are stored - * vec = the vector for which to search the nearest neighbors - * maxCheck = the maximum number of restarts (in a best-bin-first manner) - */ - void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& /*searchParams*/) - { - getNeighbors(vec, result); - } - -private: - /** Defines the comparator on score and index - */ - typedef std::pair<float, unsigned int> ScoreIndexPair; - struct SortScoreIndexPairOnSecond - { - bool operator()(const ScoreIndexPair& left, const ScoreIndexPair& right) const - { - return left.second < right.second; - } - }; - - /** Fills the different xor masks to use when getting the neighbors in multi-probe LSH - * @param key the key we build neighbors from - * @param lowest_index the lowest index of the bit set - * @param level the multi-probe level we are at - * @param xor_masks all the xor mask - */ - void fill_xor_mask(lsh::BucketKey key, int lowest_index, unsigned int level, - std::vector<lsh::BucketKey>& xor_masks) - { - xor_masks.push_back(key); - if (level == 0) return; - for (int index = lowest_index - 1; index >= 0; --index) { - // Create a new key - lsh::BucketKey new_key = key | (1 << index); - fill_xor_mask(new_key, index, level - 1, xor_masks); - } - } - - /** Performs the approximate nearest-neighbor search. - * @param vec the feature to analyze - * @param do_radius flag indicating if we check the radius too - * @param radius the radius if it is a radius search - * @param do_k flag indicating if we limit the number of nn - * @param k_nn the number of nearest neighbors - * @param checked_average used for debugging - */ - void getNeighbors(const ElementType* vec, bool /*do_radius*/, float radius, bool do_k, unsigned int k_nn, - float& /*checked_average*/) - { - static std::vector<ScoreIndexPair> score_index_heap; - - if (do_k) { - unsigned int worst_score = std::numeric_limits<unsigned int>::max(); - typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin(); - typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end(); - for (; table != table_end; ++table) { - size_t key = table->getKey(vec); - std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin(); - std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end(); - for (; xor_mask != xor_mask_end; ++xor_mask) { - size_t sub_key = key ^ (*xor_mask); - const lsh::Bucket* bucket = table->getBucketFromKey(sub_key); - if (bucket == 0) continue; - - // Go over each descriptor index - std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin(); - std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end(); - DistanceType hamming_distance; - - // Process the rest of the candidates - for (; training_index < last_training_index; ++training_index) { - hamming_distance = distance_(vec, dataset_[*training_index], dataset_.cols); - - if (hamming_distance < worst_score) { - // Insert the new element - score_index_heap.push_back(ScoreIndexPair(hamming_distance, training_index)); - std::push_heap(score_index_heap.begin(), score_index_heap.end()); - - if (score_index_heap.size() > (unsigned int)k_nn) { - // Remove the highest distance value as we have too many elements - std::pop_heap(score_index_heap.begin(), score_index_heap.end()); - score_index_heap.pop_back(); - // Keep track of the worst score - worst_score = score_index_heap.front().first; - } - } - } - } - } - } - else { - typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin(); - typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end(); - for (; table != table_end; ++table) { - size_t key = table->getKey(vec); - std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin(); - std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end(); - for (; xor_mask != xor_mask_end; ++xor_mask) { - size_t sub_key = key ^ (*xor_mask); - const lsh::Bucket* bucket = table->getBucketFromKey(sub_key); - if (bucket == 0) continue; - - // Go over each descriptor index - std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin(); - std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end(); - DistanceType hamming_distance; - - // Process the rest of the candidates - for (; training_index < last_training_index; ++training_index) { - // Compute the Hamming distance - hamming_distance = distance_(vec, dataset_[*training_index], dataset_.cols); - if (hamming_distance < radius) score_index_heap.push_back(ScoreIndexPair(hamming_distance, training_index)); - } - } - } - } - } - - /** Performs the approximate nearest-neighbor search. - * This is a slower version than the above as it uses the ResultSet - * @param vec the feature to analyze - */ - void getNeighbors(const ElementType* vec, ResultSet<DistanceType>& result) - { - typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin(); - typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end(); - for (; table != table_end; ++table) { - size_t key = table->getKey(vec); - std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin(); - std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end(); - for (; xor_mask != xor_mask_end; ++xor_mask) { - size_t sub_key = key ^ (*xor_mask); - const lsh::Bucket* bucket = table->getBucketFromKey((lsh::BucketKey)sub_key); - if (bucket == 0) continue; - - // Go over each descriptor index - std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin(); - std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end(); - DistanceType hamming_distance; - - // Process the rest of the candidates - for (; training_index < last_training_index; ++training_index) { - // Compute the Hamming distance - hamming_distance = distance_(vec, dataset_[*training_index], (int)dataset_.cols); - result.addPoint(hamming_distance, *training_index); - } - } - } - } - - /** The different hash tables */ - std::vector<lsh::LshTable<ElementType> > tables_; - - /** The data the LSH tables where built from */ - Matrix<ElementType> dataset_; - - /** The size of the features (as ElementType[]) */ - unsigned int feature_size_; - - IndexParams index_params_; - - /** table number */ - unsigned int table_number_; - /** key size */ - unsigned int key_size_; - /** How far should we look for neighbors in multi-probe LSH */ - unsigned int multi_probe_level_; - - /** The XOR masks to apply to a key to get the neighboring buckets */ - std::vector<lsh::BucketKey> xor_masks_; - - Distance distance_; -}; -} - -#endif //OPENCV_FLANN_LSH_INDEX_H_ |