diff options
Diffstat (limited to 'thirdparty/includes/OpenCV/opencv2/ocl/ocl.hpp')
-rw-r--r-- | thirdparty/includes/OpenCV/opencv2/ocl/ocl.hpp | 1998 |
1 files changed, 1998 insertions, 0 deletions
diff --git a/thirdparty/includes/OpenCV/opencv2/ocl/ocl.hpp b/thirdparty/includes/OpenCV/opencv2/ocl/ocl.hpp new file mode 100644 index 0000000..e8eb3e8 --- /dev/null +++ b/thirdparty/includes/OpenCV/opencv2/ocl/ocl.hpp @@ -0,0 +1,1998 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. +// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. +// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef __OPENCV_OCL_HPP__ +#define __OPENCV_OCL_HPP__ + +#include <memory> +#include <vector> + +#include "opencv2/core/core.hpp" +#include "opencv2/imgproc/imgproc.hpp" +#include "opencv2/objdetect/objdetect.hpp" +#include "opencv2/features2d/features2d.hpp" +#include "opencv2/ml/ml.hpp" + +namespace cv +{ + namespace ocl + { + enum DeviceType + { + CVCL_DEVICE_TYPE_DEFAULT = (1 << 0), + CVCL_DEVICE_TYPE_CPU = (1 << 1), + CVCL_DEVICE_TYPE_GPU = (1 << 2), + CVCL_DEVICE_TYPE_ACCELERATOR = (1 << 3), + //CVCL_DEVICE_TYPE_CUSTOM = (1 << 4) + CVCL_DEVICE_TYPE_ALL = 0xFFFFFFFF + }; + + enum DevMemRW + { + DEVICE_MEM_R_W = 0, + DEVICE_MEM_R_ONLY, + DEVICE_MEM_W_ONLY + }; + + enum DevMemType + { + DEVICE_MEM_DEFAULT = 0, + DEVICE_MEM_AHP, //alloc host pointer + DEVICE_MEM_UHP, //use host pointer + DEVICE_MEM_CHP, //copy host pointer + DEVICE_MEM_PM //persistent memory + }; + + // these classes contain OpenCL runtime information + + struct PlatformInfo; + + struct DeviceInfo + { + int _id; // reserved, don't use it + + DeviceType deviceType; + std::string deviceProfile; + std::string deviceVersion; + std::string deviceName; + std::string deviceVendor; + int deviceVendorId; + std::string deviceDriverVersion; + std::string deviceExtensions; + + size_t maxWorkGroupSize; + std::vector<size_t> maxWorkItemSizes; + int maxComputeUnits; + size_t localMemorySize; + size_t maxMemAllocSize; + + int deviceVersionMajor; + int deviceVersionMinor; + + bool haveDoubleSupport; + bool isUnifiedMemory; // 1 means integrated GPU, otherwise this value is 0 + bool isIntelDevice; + + std::string compilationExtraOptions; + + const PlatformInfo* platform; + + DeviceInfo(); + ~DeviceInfo(); + }; + + struct PlatformInfo + { + int _id; // reserved, don't use it + + std::string platformProfile; + std::string platformVersion; + std::string platformName; + std::string platformVendor; + std::string platformExtensons; + + int platformVersionMajor; + int platformVersionMinor; + + std::vector<const DeviceInfo*> devices; + + PlatformInfo(); + ~PlatformInfo(); + }; + + //////////////////////////////// Initialization & Info //////////////////////// + typedef std::vector<const PlatformInfo*> PlatformsInfo; + + CV_EXPORTS int getOpenCLPlatforms(PlatformsInfo& platforms); + + typedef std::vector<const DeviceInfo*> DevicesInfo; + + CV_EXPORTS int getOpenCLDevices(DevicesInfo& devices, int deviceType = CVCL_DEVICE_TYPE_GPU, + const PlatformInfo* platform = NULL); + + // set device you want to use + CV_EXPORTS void setDevice(const DeviceInfo* info); + + // Initialize from OpenCL handles directly. + // Argument types is (pointers): cl_platform_id*, cl_context*, cl_device_id* + CV_EXPORTS void initializeContext(void* pClPlatform, void* pClContext, void* pClDevice); + + //////////////////////////////// Error handling //////////////////////// + CV_EXPORTS void error(const char *error_string, const char *file, const int line, const char *func); + + enum FEATURE_TYPE + { + FEATURE_CL_DOUBLE = 1, + FEATURE_CL_UNIFIED_MEM, + FEATURE_CL_VER_1_2, + FEATURE_CL_INTEL_DEVICE + }; + + // Represents OpenCL context, interface + class CV_EXPORTS Context + { + protected: + Context() { } + ~Context() { } + public: + static Context* getContext(); + + bool supportsFeature(FEATURE_TYPE featureType) const; + const DeviceInfo& getDeviceInfo() const; + + const void* getOpenCLContextPtr() const; + const void* getOpenCLCommandQueuePtr() const; + const void* getOpenCLDeviceIDPtr() const; + }; + + inline const void *getClContextPtr() + { + return Context::getContext()->getOpenCLContextPtr(); + } + + inline const void *getClCommandQueuePtr() + { + return Context::getContext()->getOpenCLCommandQueuePtr(); + } + + CV_EXPORTS bool supportsFeature(FEATURE_TYPE featureType); + + CV_EXPORTS void finish(); + + enum BINARY_CACHE_MODE + { + CACHE_NONE = 0, // do not cache OpenCL binary + CACHE_DEBUG = 0x1 << 0, // cache OpenCL binary when built in debug mode + CACHE_RELEASE = 0x1 << 1, // default behavior, only cache when built in release mode + CACHE_ALL = CACHE_DEBUG | CACHE_RELEASE // cache opencl binary + }; + //! Enable or disable OpenCL program binary caching onto local disk + // After a program (*.cl files in opencl/ folder) is built at runtime, we allow the + // compiled OpenCL program to be cached to the path automatically as "path/*.clb" + // binary file, which will be reused when the OpenCV executable is started again. + // + // This feature is enabled by default. + CV_EXPORTS void setBinaryDiskCache(int mode = CACHE_RELEASE, cv::String path = "./"); + + //! set where binary cache to be saved to + CV_EXPORTS void setBinaryPath(const char *path); + + struct ProgramSource + { + const char* name; + const char* programStr; + const char* programHash; + + // Cache in memory by name (should be unique). Caching on disk disabled. + inline ProgramSource(const char* _name, const char* _programStr) + : name(_name), programStr(_programStr), programHash(NULL) + { + } + + // Cache in memory by name (should be unique). Caching on disk uses programHash mark. + inline ProgramSource(const char* _name, const char* _programStr, const char* _programHash) + : name(_name), programStr(_programStr), programHash(_programHash) + { + } + }; + + //! Calls OpenCL kernel. Pass globalThreads = NULL, and cleanUp = true, to finally clean-up without executing. + //! Deprecated, will be replaced + CV_EXPORTS void openCLExecuteKernelInterop(Context *clCxt, + const cv::ocl::ProgramSource& source, string kernelName, + size_t globalThreads[3], size_t localThreads[3], + std::vector< std::pair<size_t, const void *> > &args, + int channels, int depth, const char *build_options); + + class CV_EXPORTS oclMatExpr; + //////////////////////////////// oclMat //////////////////////////////// + class CV_EXPORTS oclMat + { + public: + //! default constructor + oclMat(); + //! constructs oclMatrix of the specified size and type (_type is CV_8UC1, CV_64FC3, CV_32SC(12) etc.) + oclMat(int rows, int cols, int type); + oclMat(Size size, int type); + //! constucts oclMatrix and fills it with the specified value _s. + oclMat(int rows, int cols, int type, const Scalar &s); + oclMat(Size size, int type, const Scalar &s); + //! copy constructor + oclMat(const oclMat &m); + + //! constructor for oclMatrix headers pointing to user-allocated data + oclMat(int rows, int cols, int type, void *data, size_t step = Mat::AUTO_STEP); + oclMat(Size size, int type, void *data, size_t step = Mat::AUTO_STEP); + + //! creates a matrix header for a part of the bigger matrix + oclMat(const oclMat &m, const Range &rowRange, const Range &colRange); + oclMat(const oclMat &m, const Rect &roi); + + //! builds oclMat from Mat. Perfom blocking upload to device. + explicit oclMat (const Mat &m); + + //! destructor - calls release() + ~oclMat(); + + //! assignment operators + oclMat &operator = (const oclMat &m); + //! assignment operator. Perfom blocking upload to device. + oclMat &operator = (const Mat &m); + oclMat &operator = (const oclMatExpr& expr); + + //! pefroms blocking upload data to oclMat. + void upload(const cv::Mat &m); + + + //! downloads data from device to host memory. Blocking calls. + operator Mat() const; + void download(cv::Mat &m) const; + + //! convert to _InputArray + operator _InputArray(); + + //! convert to _OutputArray + operator _OutputArray(); + + //! returns a new oclMatrix header for the specified row + oclMat row(int y) const; + //! returns a new oclMatrix header for the specified column + oclMat col(int x) const; + //! ... for the specified row span + oclMat rowRange(int startrow, int endrow) const; + oclMat rowRange(const Range &r) const; + //! ... for the specified column span + oclMat colRange(int startcol, int endcol) const; + oclMat colRange(const Range &r) const; + + //! returns deep copy of the oclMatrix, i.e. the data is copied + oclMat clone() const; + + //! copies those oclMatrix elements to "m" that are marked with non-zero mask elements. + // It calls m.create(this->size(), this->type()). + // It supports any data type + void copyTo( oclMat &m, const oclMat &mask = oclMat()) const; + + //! converts oclMatrix to another datatype with optional scalng. See cvConvertScale. + void convertTo( oclMat &m, int rtype, double alpha = 1, double beta = 0 ) const; + + void assignTo( oclMat &m, int type = -1 ) const; + + //! sets every oclMatrix element to s + oclMat& operator = (const Scalar &s); + //! sets some of the oclMatrix elements to s, according to the mask + oclMat& setTo(const Scalar &s, const oclMat &mask = oclMat()); + //! creates alternative oclMatrix header for the same data, with different + // number of channels and/or different number of rows. see cvReshape. + oclMat reshape(int cn, int rows = 0) const; + + //! allocates new oclMatrix data unless the oclMatrix already has specified size and type. + // previous data is unreferenced if needed. + void create(int rows, int cols, int type); + void create(Size size, int type); + + //! allocates new oclMatrix with specified device memory type. + void createEx(int rows, int cols, int type, DevMemRW rw_type, DevMemType mem_type); + void createEx(Size size, int type, DevMemRW rw_type, DevMemType mem_type); + + //! decreases reference counter; + // deallocate the data when reference counter reaches 0. + void release(); + + //! swaps with other smart pointer + void swap(oclMat &mat); + + //! locates oclMatrix header within a parent oclMatrix. See below + void locateROI( Size &wholeSize, Point &ofs ) const; + //! moves/resizes the current oclMatrix ROI inside the parent oclMatrix. + oclMat& adjustROI( int dtop, int dbottom, int dleft, int dright ); + //! extracts a rectangular sub-oclMatrix + // (this is a generalized form of row, rowRange etc.) + oclMat operator()( Range rowRange, Range colRange ) const; + oclMat operator()( const Rect &roi ) const; + + oclMat& operator+=( const oclMat& m ); + oclMat& operator-=( const oclMat& m ); + oclMat& operator*=( const oclMat& m ); + oclMat& operator/=( const oclMat& m ); + + //! returns true if the oclMatrix data is continuous + // (i.e. when there are no gaps between successive rows). + // similar to CV_IS_oclMat_CONT(cvoclMat->type) + bool isContinuous() const; + //! returns element size in bytes, + // similar to CV_ELEM_SIZE(cvMat->type) + size_t elemSize() const; + //! returns the size of element channel in bytes. + size_t elemSize1() const; + //! returns element type, similar to CV_MAT_TYPE(cvMat->type) + int type() const; + //! returns element type, i.e. 8UC3 returns 8UC4 because in ocl + //! 3 channels element actually use 4 channel space + int ocltype() const; + //! returns element type, similar to CV_MAT_DEPTH(cvMat->type) + int depth() const; + //! returns element type, similar to CV_MAT_CN(cvMat->type) + int channels() const; + //! returns element type, return 4 for 3 channels element, + //!becuase 3 channels element actually use 4 channel space + int oclchannels() const; + //! returns step/elemSize1() + size_t step1() const; + //! returns oclMatrix size: + // width == number of columns, height == number of rows + Size size() const; + //! returns true if oclMatrix data is NULL + bool empty() const; + + //! matrix transposition + oclMat t() const; + + /*! includes several bit-fields: + - the magic signature + - continuity flag + - depth + - number of channels + */ + int flags; + //! the number of rows and columns + int rows, cols; + //! a distance between successive rows in bytes; includes the gap if any + size_t step; + //! pointer to the data(OCL memory object) + uchar *data; + + //! pointer to the reference counter; + // when oclMatrix points to user-allocated data, the pointer is NULL + int *refcount; + + //! helper fields used in locateROI and adjustROI + //datastart and dataend are not used in current version + uchar *datastart; + uchar *dataend; + + //! OpenCL context associated with the oclMat object. + Context *clCxt; // TODO clCtx + //add offset for handle ROI, calculated in byte + int offset; + //add wholerows and wholecols for the whole matrix, datastart and dataend are no longer used + int wholerows; + int wholecols; + }; + + // convert InputArray/OutputArray to oclMat references + CV_EXPORTS oclMat& getOclMatRef(InputArray src); + CV_EXPORTS oclMat& getOclMatRef(OutputArray src); + + ///////////////////// mat split and merge ///////////////////////////////// + //! Compose a multi-channel array from several single-channel arrays + // Support all types + CV_EXPORTS void merge(const oclMat *src, size_t n, oclMat &dst); + CV_EXPORTS void merge(const vector<oclMat> &src, oclMat &dst); + + //! Divides multi-channel array into several single-channel arrays + // Support all types + CV_EXPORTS void split(const oclMat &src, oclMat *dst); + CV_EXPORTS void split(const oclMat &src, vector<oclMat> &dst); + + ////////////////////////////// Arithmetics /////////////////////////////////// + + //! adds one matrix to another with scale (dst = src1 * alpha + src2 * beta + gama) + // supports all data types + CV_EXPORTS void addWeighted(const oclMat &src1, double alpha, const oclMat &src2, double beta, double gama, oclMat &dst); + + //! adds one matrix to another (dst = src1 + src2) + // supports all data types + CV_EXPORTS void add(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask = oclMat()); + //! adds scalar to a matrix (dst = src1 + s) + // supports all data types + CV_EXPORTS void add(const oclMat &src1, const Scalar &s, oclMat &dst, const oclMat &mask = oclMat()); + + //! subtracts one matrix from another (dst = src1 - src2) + // supports all data types + CV_EXPORTS void subtract(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask = oclMat()); + //! subtracts scalar from a matrix (dst = src1 - s) + // supports all data types + CV_EXPORTS void subtract(const oclMat &src1, const Scalar &s, oclMat &dst, const oclMat &mask = oclMat()); + + //! computes element-wise product of the two arrays (dst = src1 * scale * src2) + // supports all data types + CV_EXPORTS void multiply(const oclMat &src1, const oclMat &src2, oclMat &dst, double scale = 1); + //! multiplies matrix to a number (dst = scalar * src) + // supports all data types + CV_EXPORTS void multiply(double scalar, const oclMat &src, oclMat &dst); + + //! computes element-wise quotient of the two arrays (dst = src1 * scale / src2) + // supports all data types + CV_EXPORTS void divide(const oclMat &src1, const oclMat &src2, oclMat &dst, double scale = 1); + //! computes element-wise quotient of the two arrays (dst = scale / src) + // supports all data types + CV_EXPORTS void divide(double scale, const oclMat &src1, oclMat &dst); + + //! computes element-wise minimum of the two arrays (dst = min(src1, src2)) + // supports all data types + CV_EXPORTS void min(const oclMat &src1, const oclMat &src2, oclMat &dst); + + //! computes element-wise maximum of the two arrays (dst = max(src1, src2)) + // supports all data types + CV_EXPORTS void max(const oclMat &src1, const oclMat &src2, oclMat &dst); + + //! compares elements of two arrays (dst = src1 \verbatim<cmpop>\endverbatim src2) + // supports all data types + CV_EXPORTS void compare(const oclMat &src1, const oclMat &src2, oclMat &dst, int cmpop); + + //! transposes the matrix + // supports all data types + CV_EXPORTS void transpose(const oclMat &src, oclMat &dst); + + //! computes element-wise absolute values of an array (dst = abs(src)) + // supports all data types + CV_EXPORTS void abs(const oclMat &src, oclMat &dst); + + //! computes element-wise absolute difference of two arrays (dst = abs(src1 - src2)) + // supports all data types + CV_EXPORTS void absdiff(const oclMat &src1, const oclMat &src2, oclMat &dst); + //! computes element-wise absolute difference of array and scalar (dst = abs(src1 - s)) + // supports all data types + CV_EXPORTS void absdiff(const oclMat &src1, const Scalar &s, oclMat &dst); + + //! computes mean value and standard deviation of all or selected array elements + // supports all data types + CV_EXPORTS void meanStdDev(const oclMat &mtx, Scalar &mean, Scalar &stddev); + + //! computes norm of array + // supports NORM_INF, NORM_L1, NORM_L2 + // supports all data types + CV_EXPORTS double norm(const oclMat &src1, int normType = NORM_L2); + + //! computes norm of the difference between two arrays + // supports NORM_INF, NORM_L1, NORM_L2 + // supports all data types + CV_EXPORTS double norm(const oclMat &src1, const oclMat &src2, int normType = NORM_L2); + + //! reverses the order of the rows, columns or both in a matrix + // supports all types + CV_EXPORTS void flip(const oclMat &src, oclMat &dst, int flipCode); + + //! computes sum of array elements + // support all types + CV_EXPORTS Scalar sum(const oclMat &m); + CV_EXPORTS Scalar absSum(const oclMat &m); + CV_EXPORTS Scalar sqrSum(const oclMat &m); + + //! finds global minimum and maximum array elements and returns their values + // support all C1 types + CV_EXPORTS void minMax(const oclMat &src, double *minVal, double *maxVal = 0, const oclMat &mask = oclMat()); + + //! finds global minimum and maximum array elements and returns their values with locations + // support all C1 types + CV_EXPORTS void minMaxLoc(const oclMat &src, double *minVal, double *maxVal = 0, Point *minLoc = 0, Point *maxLoc = 0, + const oclMat &mask = oclMat()); + + //! counts non-zero array elements + // support all types + CV_EXPORTS int countNonZero(const oclMat &src); + + //! transforms 8-bit unsigned integers using lookup table: dst(i)=lut(src(i)) + // destination array will have the depth type as lut and the same channels number as source + //It supports 8UC1 8UC4 only + CV_EXPORTS void LUT(const oclMat &src, const oclMat &lut, oclMat &dst); + + //! only 8UC1 and 256 bins is supported now + CV_EXPORTS void calcHist(const oclMat &mat_src, oclMat &mat_hist); + //! only 8UC1 and 256 bins is supported now + CV_EXPORTS void equalizeHist(const oclMat &mat_src, oclMat &mat_dst); + + //! only 8UC1 is supported now + CV_EXPORTS Ptr<cv::CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8)); + + //! bilateralFilter + // supports 8UC1 8UC4 + CV_EXPORTS void bilateralFilter(const oclMat& src, oclMat& dst, int d, double sigmaColor, double sigmaSpace, int borderType=BORDER_DEFAULT); + + //! Applies an adaptive bilateral filter to the input image + // Unlike the usual bilateral filter that uses fixed value for sigmaColor, + // the adaptive version calculates the local variance in he ksize neighborhood + // and use this as sigmaColor, for the value filtering. However, the local standard deviation is + // clamped to the maxSigmaColor. + // supports 8UC1, 8UC3 + CV_EXPORTS void adaptiveBilateralFilter(const oclMat& src, oclMat& dst, Size ksize, double sigmaSpace, double maxSigmaColor=20.0, Point anchor = Point(-1, -1), int borderType=BORDER_DEFAULT); + + //! computes exponent of each matrix element (dst = e**src) + // supports only CV_32FC1, CV_64FC1 type + CV_EXPORTS void exp(const oclMat &src, oclMat &dst); + + //! computes natural logarithm of absolute value of each matrix element: dst = log(abs(src)) + // supports only CV_32FC1, CV_64FC1 type + CV_EXPORTS void log(const oclMat &src, oclMat &dst); + + //! computes magnitude of each (x(i), y(i)) vector + // supports only CV_32F, CV_64F type + CV_EXPORTS void magnitude(const oclMat &x, const oclMat &y, oclMat &magnitude); + + //! computes angle (angle(i)) of each (x(i), y(i)) vector + // supports only CV_32F, CV_64F type + CV_EXPORTS void phase(const oclMat &x, const oclMat &y, oclMat &angle, bool angleInDegrees = false); + + //! the function raises every element of tne input array to p + // support only CV_32F, CV_64F type + CV_EXPORTS void pow(const oclMat &x, double p, oclMat &y); + + //! converts Cartesian coordinates to polar + // supports only CV_32F CV_64F type + CV_EXPORTS void cartToPolar(const oclMat &x, const oclMat &y, oclMat &magnitude, oclMat &angle, bool angleInDegrees = false); + + //! converts polar coordinates to Cartesian + // supports only CV_32F CV_64F type + CV_EXPORTS void polarToCart(const oclMat &magnitude, const oclMat &angle, oclMat &x, oclMat &y, bool angleInDegrees = false); + + //! perfroms per-elements bit-wise inversion + // supports all types + CV_EXPORTS void bitwise_not(const oclMat &src, oclMat &dst); + + //! calculates per-element bit-wise disjunction of two arrays + // supports all types + CV_EXPORTS void bitwise_or(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask = oclMat()); + CV_EXPORTS void bitwise_or(const oclMat &src1, const Scalar &s, oclMat &dst, const oclMat &mask = oclMat()); + + //! calculates per-element bit-wise conjunction of two arrays + // supports all types + CV_EXPORTS void bitwise_and(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask = oclMat()); + CV_EXPORTS void bitwise_and(const oclMat &src1, const Scalar &s, oclMat &dst, const oclMat &mask = oclMat()); + + //! calculates per-element bit-wise "exclusive or" operation + // supports all types + CV_EXPORTS void bitwise_xor(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask = oclMat()); + CV_EXPORTS void bitwise_xor(const oclMat &src1, const Scalar &s, oclMat &dst, const oclMat &mask = oclMat()); + + //! Logical operators + CV_EXPORTS oclMat operator ~ (const oclMat &); + CV_EXPORTS oclMat operator | (const oclMat &, const oclMat &); + CV_EXPORTS oclMat operator & (const oclMat &, const oclMat &); + CV_EXPORTS oclMat operator ^ (const oclMat &, const oclMat &); + + + //! Mathematics operators + CV_EXPORTS oclMatExpr operator + (const oclMat &src1, const oclMat &src2); + CV_EXPORTS oclMatExpr operator - (const oclMat &src1, const oclMat &src2); + CV_EXPORTS oclMatExpr operator * (const oclMat &src1, const oclMat &src2); + CV_EXPORTS oclMatExpr operator / (const oclMat &src1, const oclMat &src2); + + //! computes convolution of two images + // support only CV_32FC1 type + CV_EXPORTS void convolve(const oclMat &image, const oclMat &temp1, oclMat &result); + + CV_EXPORTS void cvtColor(const oclMat &src, oclMat &dst, int code, int dcn = 0); + + //! initializes a scaled identity matrix + CV_EXPORTS void setIdentity(oclMat& src, const Scalar & val = Scalar(1)); + + //! fills the output array with repeated copies of the input array + CV_EXPORTS void repeat(const oclMat & src, int ny, int nx, oclMat & dst); + + //////////////////////////////// Filter Engine //////////////////////////////// + + /*! + The Base Class for 1D or Row-wise Filters + + This is the base class for linear or non-linear filters that process 1D data. + In particular, such filters are used for the "horizontal" filtering parts in separable filters. + */ + class CV_EXPORTS BaseRowFilter_GPU + { + public: + BaseRowFilter_GPU(int ksize_, int anchor_, int bordertype_) : ksize(ksize_), anchor(anchor_), bordertype(bordertype_) {} + virtual ~BaseRowFilter_GPU() {} + virtual void operator()(const oclMat &src, oclMat &dst) = 0; + int ksize, anchor, bordertype; + }; + + /*! + The Base Class for Column-wise Filters + + This is the base class for linear or non-linear filters that process columns of 2D arrays. + Such filters are used for the "vertical" filtering parts in separable filters. + */ + class CV_EXPORTS BaseColumnFilter_GPU + { + public: + BaseColumnFilter_GPU(int ksize_, int anchor_, int bordertype_) : ksize(ksize_), anchor(anchor_), bordertype(bordertype_) {} + virtual ~BaseColumnFilter_GPU() {} + virtual void operator()(const oclMat &src, oclMat &dst) = 0; + int ksize, anchor, bordertype; + }; + + /*! + The Base Class for Non-Separable 2D Filters. + + This is the base class for linear or non-linear 2D filters. + */ + class CV_EXPORTS BaseFilter_GPU + { + public: + BaseFilter_GPU(const Size &ksize_, const Point &anchor_, const int &borderType_) + : ksize(ksize_), anchor(anchor_), borderType(borderType_) {} + virtual ~BaseFilter_GPU() {} + virtual void operator()(const oclMat &src, oclMat &dst) = 0; + Size ksize; + Point anchor; + int borderType; + }; + + /*! + The Base Class for Filter Engine. + + The class can be used to apply an arbitrary filtering operation to an image. + It contains all the necessary intermediate buffers. + */ + class CV_EXPORTS FilterEngine_GPU + { + public: + virtual ~FilterEngine_GPU() {} + + virtual void apply(const oclMat &src, oclMat &dst, Rect roi = Rect(0, 0, -1, -1)) = 0; + }; + + //! returns the non-separable filter engine with the specified filter + CV_EXPORTS Ptr<FilterEngine_GPU> createFilter2D_GPU(const Ptr<BaseFilter_GPU> filter2D); + + //! returns the primitive row filter with the specified kernel + CV_EXPORTS Ptr<BaseRowFilter_GPU> getLinearRowFilter_GPU(int srcType, int bufType, const Mat &rowKernel, + int anchor = -1, int bordertype = BORDER_DEFAULT); + + //! returns the primitive column filter with the specified kernel + CV_EXPORTS Ptr<BaseColumnFilter_GPU> getLinearColumnFilter_GPU(int bufType, int dstType, const Mat &columnKernel, + int anchor = -1, int bordertype = BORDER_DEFAULT, double delta = 0.0); + + //! returns the separable linear filter engine + CV_EXPORTS Ptr<FilterEngine_GPU> createSeparableLinearFilter_GPU(int srcType, int dstType, const Mat &rowKernel, + const Mat &columnKernel, const Point &anchor = Point(-1, -1), double delta = 0.0, int bordertype = BORDER_DEFAULT, Size imgSize = Size(-1,-1)); + + //! returns the separable filter engine with the specified filters + CV_EXPORTS Ptr<FilterEngine_GPU> createSeparableFilter_GPU(const Ptr<BaseRowFilter_GPU> &rowFilter, + const Ptr<BaseColumnFilter_GPU> &columnFilter); + + //! returns the Gaussian filter engine + CV_EXPORTS Ptr<FilterEngine_GPU> createGaussianFilter_GPU(int type, Size ksize, double sigma1, double sigma2 = 0, int bordertype = BORDER_DEFAULT, Size imgSize = Size(-1,-1)); + + //! returns filter engine for the generalized Sobel operator + CV_EXPORTS Ptr<FilterEngine_GPU> createDerivFilter_GPU( int srcType, int dstType, int dx, int dy, int ksize, int borderType = BORDER_DEFAULT, Size imgSize = Size(-1,-1) ); + + //! applies Laplacian operator to the image + // supports only ksize = 1 and ksize = 3 + CV_EXPORTS void Laplacian(const oclMat &src, oclMat &dst, int ddepth, int ksize = 1, double scale = 1, + double delta=0, int borderType=BORDER_DEFAULT); + + //! returns 2D box filter + // dst type must be the same as source type + CV_EXPORTS Ptr<BaseFilter_GPU> getBoxFilter_GPU(int srcType, int dstType, + const Size &ksize, Point anchor = Point(-1, -1), int borderType = BORDER_DEFAULT); + + //! returns box filter engine + CV_EXPORTS Ptr<FilterEngine_GPU> createBoxFilter_GPU(int srcType, int dstType, const Size &ksize, + const Point &anchor = Point(-1, -1), int borderType = BORDER_DEFAULT); + + //! returns 2D filter with the specified kernel + // supports: dst type must be the same as source type + CV_EXPORTS Ptr<BaseFilter_GPU> getLinearFilter_GPU(int srcType, int dstType, const Mat &kernel, const Size &ksize, + const Point &anchor = Point(-1, -1), int borderType = BORDER_DEFAULT); + + //! returns the non-separable linear filter engine + // supports: dst type must be the same as source type + CV_EXPORTS Ptr<FilterEngine_GPU> createLinearFilter_GPU(int srcType, int dstType, const Mat &kernel, + const Point &anchor = Point(-1, -1), int borderType = BORDER_DEFAULT); + + //! smooths the image using the normalized box filter + CV_EXPORTS void boxFilter(const oclMat &src, oclMat &dst, int ddepth, Size ksize, + Point anchor = Point(-1, -1), int borderType = BORDER_DEFAULT); + + //! returns 2D morphological filter + //! only MORPH_ERODE and MORPH_DILATE are supported + // supports CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4 types + // kernel must have CV_8UC1 type, one rows and cols == ksize.width * ksize.height + CV_EXPORTS Ptr<BaseFilter_GPU> getMorphologyFilter_GPU(int op, int type, const Mat &kernel, const Size &ksize, + Point anchor = Point(-1, -1)); + + //! returns morphological filter engine. Only MORPH_ERODE and MORPH_DILATE are supported. + CV_EXPORTS Ptr<FilterEngine_GPU> createMorphologyFilter_GPU(int op, int type, const Mat &kernel, + const Point &anchor = Point(-1, -1), int iterations = 1); + + //! a synonym for normalized box filter + static inline void blur(const oclMat &src, oclMat &dst, Size ksize, Point anchor = Point(-1, -1), + int borderType = BORDER_CONSTANT) + { + boxFilter(src, dst, -1, ksize, anchor, borderType); + } + + //! applies non-separable 2D linear filter to the image + CV_EXPORTS void filter2D(const oclMat &src, oclMat &dst, int ddepth, const Mat &kernel, + Point anchor = Point(-1, -1), double delta = 0.0, int borderType = BORDER_DEFAULT); + + //! applies separable 2D linear filter to the image + CV_EXPORTS void sepFilter2D(const oclMat &src, oclMat &dst, int ddepth, const Mat &kernelX, const Mat &kernelY, + Point anchor = Point(-1, -1), double delta = 0.0, int bordertype = BORDER_DEFAULT); + + //! applies generalized Sobel operator to the image + // dst.type must equalize src.type + // supports data type: CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4 + // supports border type: BORDER_CONSTANT, BORDER_REPLICATE, BORDER_REFLECT,BORDER_REFLECT_101 + CV_EXPORTS void Sobel(const oclMat &src, oclMat &dst, int ddepth, int dx, int dy, int ksize = 3, double scale = 1, double delta = 0.0, int bordertype = BORDER_DEFAULT); + + //! applies the vertical or horizontal Scharr operator to the image + // dst.type must equalize src.type + // supports data type: CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4 + // supports border type: BORDER_CONSTANT, BORDER_REPLICATE, BORDER_REFLECT,BORDER_REFLECT_101 + CV_EXPORTS void Scharr(const oclMat &src, oclMat &dst, int ddepth, int dx, int dy, double scale = 1, double delta = 0.0, int bordertype = BORDER_DEFAULT); + + //! smooths the image using Gaussian filter. + // dst.type must equalize src.type + // supports data type: CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4 + // supports border type: BORDER_CONSTANT, BORDER_REPLICATE, BORDER_REFLECT,BORDER_REFLECT_101 + CV_EXPORTS void GaussianBlur(const oclMat &src, oclMat &dst, Size ksize, double sigma1, double sigma2 = 0, int bordertype = BORDER_DEFAULT); + + //! erodes the image (applies the local minimum operator) + // supports data type: CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4 + CV_EXPORTS void erode( const oclMat &src, oclMat &dst, const Mat &kernel, Point anchor = Point(-1, -1), int iterations = 1, + + int borderType = BORDER_CONSTANT, const Scalar &borderValue = morphologyDefaultBorderValue()); + + + //! dilates the image (applies the local maximum operator) + // supports data type: CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4 + CV_EXPORTS void dilate( const oclMat &src, oclMat &dst, const Mat &kernel, Point anchor = Point(-1, -1), int iterations = 1, + + int borderType = BORDER_CONSTANT, const Scalar &borderValue = morphologyDefaultBorderValue()); + + + //! applies an advanced morphological operation to the image + CV_EXPORTS void morphologyEx( const oclMat &src, oclMat &dst, int op, const Mat &kernel, Point anchor = Point(-1, -1), int iterations = 1, + + int borderType = BORDER_CONSTANT, const Scalar &borderValue = morphologyDefaultBorderValue()); + + + ////////////////////////////// Image processing ////////////////////////////// + //! Does mean shift filtering on GPU. + CV_EXPORTS void meanShiftFiltering(const oclMat &src, oclMat &dst, int sp, int sr, + TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1)); + + //! Does mean shift procedure on GPU. + CV_EXPORTS void meanShiftProc(const oclMat &src, oclMat &dstr, oclMat &dstsp, int sp, int sr, + TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1)); + + //! Does mean shift segmentation with elimiation of small regions. + CV_EXPORTS void meanShiftSegmentation(const oclMat &src, Mat &dst, int sp, int sr, int minsize, + TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1)); + + //! applies fixed threshold to the image. + // supports CV_8UC1 and CV_32FC1 data type + // supports threshold type: THRESH_BINARY, THRESH_BINARY_INV, THRESH_TRUNC, THRESH_TOZERO, THRESH_TOZERO_INV + CV_EXPORTS double threshold(const oclMat &src, oclMat &dst, double thresh, double maxVal, int type = THRESH_TRUNC); + + //! resizes the image + // Supports INTER_NEAREST, INTER_LINEAR + // supports CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4 types + CV_EXPORTS void resize(const oclMat &src, oclMat &dst, Size dsize, double fx = 0, double fy = 0, int interpolation = INTER_LINEAR); + + //! Applies a generic geometrical transformation to an image. + + // Supports INTER_NEAREST, INTER_LINEAR. + // Map1 supports CV_16SC2, CV_32FC2 types. + // Src supports CV_8UC1, CV_8UC2, CV_8UC4. + CV_EXPORTS void remap(const oclMat &src, oclMat &dst, oclMat &map1, oclMat &map2, int interpolation, int bordertype, const Scalar &value = Scalar()); + + //! copies 2D array to a larger destination array and pads borders with user-specifiable constant + // supports CV_8UC1, CV_8UC4, CV_32SC1 types + CV_EXPORTS void copyMakeBorder(const oclMat &src, oclMat &dst, int top, int bottom, int left, int right, int boardtype, const Scalar &value = Scalar()); + + //! Smoothes image using median filter + // The source 1- or 4-channel image. m should be 3 or 5, the image depth should be CV_8U or CV_32F. + CV_EXPORTS void medianFilter(const oclMat &src, oclMat &dst, int m); + + //! warps the image using affine transformation + // Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC + // supports CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4 types + CV_EXPORTS void warpAffine(const oclMat &src, oclMat &dst, const Mat &M, Size dsize, int flags = INTER_LINEAR); + + //! warps the image using perspective transformation + // Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC + // supports CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4 types + CV_EXPORTS void warpPerspective(const oclMat &src, oclMat &dst, const Mat &M, Size dsize, int flags = INTER_LINEAR); + + //! computes the integral image and integral for the squared image + // sum will have CV_32S type, sqsum - CV32F type + // supports only CV_8UC1 source type + CV_EXPORTS void integral(const oclMat &src, oclMat &sum, oclMat &sqsum); + CV_EXPORTS void integral(const oclMat &src, oclMat &sum); + CV_EXPORTS void cornerHarris(const oclMat &src, oclMat &dst, int blockSize, int ksize, double k, int bordertype = cv::BORDER_DEFAULT); + CV_EXPORTS void cornerHarris_dxdy(const oclMat &src, oclMat &dst, oclMat &Dx, oclMat &Dy, + int blockSize, int ksize, double k, int bordertype = cv::BORDER_DEFAULT); + CV_EXPORTS void cornerMinEigenVal(const oclMat &src, oclMat &dst, int blockSize, int ksize, int bordertype = cv::BORDER_DEFAULT); + CV_EXPORTS void cornerMinEigenVal_dxdy(const oclMat &src, oclMat &dst, oclMat &Dx, oclMat &Dy, + int blockSize, int ksize, int bordertype = cv::BORDER_DEFAULT); + /////////////////////////////////// ML /////////////////////////////////////////// + + //! Compute closest centers for each lines in source and lable it after center's index + // supports CV_32FC1/CV_32FC2/CV_32FC4 data type + // supports NORM_L1 and NORM_L2 distType + // if indices is provided, only the indexed rows will be calculated and their results are in the same + // order of indices + CV_EXPORTS void distanceToCenters(const oclMat &src, const oclMat ¢ers, Mat &dists, Mat &labels, int distType = NORM_L2SQR); + + //!Does k-means procedure on GPU + // supports CV_32FC1/CV_32FC2/CV_32FC4 data type + CV_EXPORTS double kmeans(const oclMat &src, int K, oclMat &bestLabels, + TermCriteria criteria, int attemps, int flags, oclMat ¢ers); + + + //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + ///////////////////////////////////////////CascadeClassifier////////////////////////////////////////////////////////////////// + /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + + class CV_EXPORTS_W OclCascadeClassifier : public cv::CascadeClassifier + { + public: + OclCascadeClassifier() {}; + ~OclCascadeClassifier() {}; + + CvSeq* oclHaarDetectObjects(oclMat &gimg, CvMemStorage *storage, double scaleFactor, + int minNeighbors, int flags, CvSize minSize = cvSize(0, 0), CvSize maxSize = cvSize(0, 0)); + void detectMultiScale(oclMat &image, CV_OUT std::vector<cv::Rect>& faces, + double scaleFactor = 1.1, int minNeighbors = 3, int flags = 0, + Size minSize = Size(), Size maxSize = Size()); + }; + + class CV_EXPORTS OclCascadeClassifierBuf : public cv::CascadeClassifier + { + public: + OclCascadeClassifierBuf() : + m_flags(0), initialized(false), m_scaleFactor(0), buffers(NULL) {} + + ~OclCascadeClassifierBuf() { release(); } + + void detectMultiScale(oclMat &image, CV_OUT std::vector<cv::Rect>& faces, + double scaleFactor = 1.1, int minNeighbors = 3, int flags = 0, + Size minSize = Size(), Size maxSize = Size()); + void release(); + + private: + void Init(const int rows, const int cols, double scaleFactor, int flags, + const int outputsz, const size_t localThreads[], + CvSize minSize, CvSize maxSize); + void CreateBaseBufs(const int datasize, const int totalclassifier, const int flags, const int outputsz); + void CreateFactorRelatedBufs(const int rows, const int cols, const int flags, + const double scaleFactor, const size_t localThreads[], + CvSize minSize, CvSize maxSize); + void GenResult(CV_OUT std::vector<cv::Rect>& faces, const std::vector<cv::Rect> &rectList, const std::vector<int> &rweights); + + int m_rows; + int m_cols; + int m_flags; + int m_loopcount; + int m_nodenum; + bool findBiggestObject; + bool initialized; + double m_scaleFactor; + Size m_minSize; + Size m_maxSize; + vector<CvSize> sizev; + vector<float> scalev; + oclMat gimg1, gsum, gsqsum; + void * buffers; + }; + + + /////////////////////////////// Pyramid ///////////////////////////////////// + CV_EXPORTS void pyrDown(const oclMat &src, oclMat &dst); + + //! upsamples the source image and then smoothes it + CV_EXPORTS void pyrUp(const oclMat &src, oclMat &dst); + + //! performs linear blending of two images + //! to avoid accuracy errors sum of weigths shouldn't be very close to zero + // supports only CV_8UC1 source type + CV_EXPORTS void blendLinear(const oclMat &img1, const oclMat &img2, const oclMat &weights1, const oclMat &weights2, oclMat &result); + + //! computes vertical sum, supports only CV_32FC1 images + CV_EXPORTS void columnSum(const oclMat &src, oclMat &sum); + + ///////////////////////////////////////// match_template ///////////////////////////////////////////////////////////// + struct CV_EXPORTS MatchTemplateBuf + { + Size user_block_size; + oclMat imagef, templf; + std::vector<oclMat> images; + std::vector<oclMat> image_sums; + std::vector<oclMat> image_sqsums; + }; + + //! computes the proximity map for the raster template and the image where the template is searched for + // Supports TM_SQDIFF, TM_SQDIFF_NORMED, TM_CCORR, TM_CCORR_NORMED, TM_CCOEFF, TM_CCOEFF_NORMED for type 8UC1 and 8UC4 + // Supports TM_SQDIFF, TM_CCORR for type 32FC1 and 32FC4 + CV_EXPORTS void matchTemplate(const oclMat &image, const oclMat &templ, oclMat &result, int method); + + //! computes the proximity map for the raster template and the image where the template is searched for + // Supports TM_SQDIFF, TM_SQDIFF_NORMED, TM_CCORR, TM_CCORR_NORMED, TM_CCOEFF, TM_CCOEFF_NORMED for type 8UC1 and 8UC4 + // Supports TM_SQDIFF, TM_CCORR for type 32FC1 and 32FC4 + CV_EXPORTS void matchTemplate(const oclMat &image, const oclMat &templ, oclMat &result, int method, MatchTemplateBuf &buf); + + ///////////////////////////////////////////// Canny ///////////////////////////////////////////// + struct CV_EXPORTS CannyBuf; + //! compute edges of the input image using Canny operator + // Support CV_8UC1 only + CV_EXPORTS void Canny(const oclMat &image, oclMat &edges, double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false); + CV_EXPORTS void Canny(const oclMat &image, CannyBuf &buf, oclMat &edges, double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false); + CV_EXPORTS void Canny(const oclMat &dx, const oclMat &dy, oclMat &edges, double low_thresh, double high_thresh, bool L2gradient = false); + CV_EXPORTS void Canny(const oclMat &dx, const oclMat &dy, CannyBuf &buf, oclMat &edges, double low_thresh, double high_thresh, bool L2gradient = false); + + struct CV_EXPORTS CannyBuf + { + CannyBuf() : counter(1, 1, CV_32S) { } + ~CannyBuf() + { + release(); + } + explicit CannyBuf(const Size &image_size, int apperture_size = 3) : counter(1, 1, CV_32S) + { + create(image_size, apperture_size); + } + CannyBuf(const oclMat &dx_, const oclMat &dy_); + + void create(const Size &image_size, int apperture_size = 3); + void release(); + oclMat dx, dy; + oclMat dx_buf, dy_buf; + oclMat edgeBuf; + oclMat trackBuf1, trackBuf2; + oclMat counter; + Ptr<FilterEngine_GPU> filterDX, filterDY; + }; + + ///////////////////////////////////////// clAmdFft related ///////////////////////////////////////// + //! Performs a forward or inverse discrete Fourier transform (1D or 2D) of floating point matrix. + //! Param dft_size is the size of DFT transform. + //! + //! For complex-to-real transform it is assumed that the source matrix is packed in CLFFT's format. + // support src type of CV32FC1, CV32FC2 + // support flags: DFT_INVERSE, DFT_REAL_OUTPUT, DFT_COMPLEX_OUTPUT, DFT_ROWS + // dft_size is the size of original input, which is used for transformation from complex to real. + // dft_size must be powers of 2, 3 and 5 + // real to complex dft requires at least v1.8 clAmdFft + // real to complex dft output is not the same with cpu version + // real to complex and complex to real does not support DFT_ROWS + CV_EXPORTS void dft(const oclMat &src, oclMat &dst, Size dft_size = Size(), int flags = 0); + + //! implements generalized matrix product algorithm GEMM from BLAS + // The functionality requires clAmdBlas library + // only support type CV_32FC1 + // flag GEMM_3_T is not supported + CV_EXPORTS void gemm(const oclMat &src1, const oclMat &src2, double alpha, + const oclMat &src3, double beta, oclMat &dst, int flags = 0); + + //////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector ////////////// + struct CV_EXPORTS HOGDescriptor + { + enum { DEFAULT_WIN_SIGMA = -1 }; + enum { DEFAULT_NLEVELS = 64 }; + enum { DESCR_FORMAT_ROW_BY_ROW, DESCR_FORMAT_COL_BY_COL }; + HOGDescriptor(Size win_size = Size(64, 128), Size block_size = Size(16, 16), + Size block_stride = Size(8, 8), Size cell_size = Size(8, 8), + int nbins = 9, double win_sigma = DEFAULT_WIN_SIGMA, + double threshold_L2hys = 0.2, bool gamma_correction = true, + int nlevels = DEFAULT_NLEVELS); + + size_t getDescriptorSize() const; + size_t getBlockHistogramSize() const; + void setSVMDetector(const vector<float> &detector); + static vector<float> getDefaultPeopleDetector(); + static vector<float> getPeopleDetector48x96(); + static vector<float> getPeopleDetector64x128(); + void detect(const oclMat &img, vector<Point> &found_locations, + double hit_threshold = 0, Size win_stride = Size(), + Size padding = Size()); + void detectMultiScale(const oclMat &img, vector<Rect> &found_locations, + double hit_threshold = 0, Size win_stride = Size(), + Size padding = Size(), double scale0 = 1.05, + int group_threshold = 2); + void getDescriptors(const oclMat &img, Size win_stride, + oclMat &descriptors, + int descr_format = DESCR_FORMAT_COL_BY_COL); + Size win_size; + Size block_size; + Size block_stride; + Size cell_size; + + int nbins; + double win_sigma; + double threshold_L2hys; + bool gamma_correction; + int nlevels; + + protected: + // initialize buffers; only need to do once in case of multiscale detection + void init_buffer(const oclMat &img, Size win_stride); + void computeBlockHistograms(const oclMat &img); + void computeGradient(const oclMat &img, oclMat &grad, oclMat &qangle); + double getWinSigma() const; + bool checkDetectorSize() const; + + static int numPartsWithin(int size, int part_size, int stride); + static Size numPartsWithin(Size size, Size part_size, Size stride); + + // Coefficients of the separating plane + float free_coef; + oclMat detector; + // Results of the last classification step + oclMat labels; + Mat labels_host; + // Results of the last histogram evaluation step + oclMat block_hists; + // Gradients conputation results + oclMat grad, qangle; + // scaled image + oclMat image_scale; + // effect size of input image (might be different from original size after scaling) + Size effect_size; + + private: + oclMat gauss_w_lut; + }; + + + ////////////////////////feature2d_ocl///////////////// + /****************************************************************************************\ + * Distance * + \****************************************************************************************/ + template<typename T> + struct CV_EXPORTS Accumulator + { + typedef T Type; + }; + template<> struct Accumulator<unsigned char> + { + typedef float Type; + }; + template<> struct Accumulator<unsigned short> + { + typedef float Type; + }; + template<> struct Accumulator<char> + { + typedef float Type; + }; + template<> struct Accumulator<short> + { + typedef float Type; + }; + + /* + * Manhattan distance (city block distance) functor + */ + template<class T> + struct CV_EXPORTS L1 + { + enum { normType = NORM_L1 }; + typedef T ValueType; + typedef typename Accumulator<T>::Type ResultType; + + ResultType operator()( const T *a, const T *b, int size ) const + { + return normL1<ValueType, ResultType>(a, b, size); + } + }; + + /* + * Euclidean distance functor + */ + template<class T> + struct CV_EXPORTS L2 + { + enum { normType = NORM_L2 }; + typedef T ValueType; + typedef typename Accumulator<T>::Type ResultType; + + ResultType operator()( const T *a, const T *b, int size ) const + { + return (ResultType)sqrt((double)normL2Sqr<ValueType, ResultType>(a, b, size)); + } + }; + + /* + * Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor + * bit count of A exclusive XOR'ed with B + */ + struct CV_EXPORTS Hamming + { + enum { normType = NORM_HAMMING }; + typedef unsigned char ValueType; + typedef int ResultType; + + /** this will count the bits in a ^ b + */ + ResultType operator()( const unsigned char *a, const unsigned char *b, int size ) const + { + return normHamming(a, b, size); + } + }; + + ////////////////////////////////// BruteForceMatcher ////////////////////////////////// + + class CV_EXPORTS BruteForceMatcher_OCL_base + { + public: + enum DistType {L1Dist = 0, L2Dist, HammingDist}; + explicit BruteForceMatcher_OCL_base(DistType distType = L2Dist); + // Add descriptors to train descriptor collection + void add(const std::vector<oclMat> &descCollection); + // Get train descriptors collection + const std::vector<oclMat> &getTrainDescriptors() const; + // Clear train descriptors collection + void clear(); + // Return true if there are not train descriptors in collection + bool empty() const; + + // Return true if the matcher supports mask in match methods + bool isMaskSupported() const; + + // Find one best match for each query descriptor + void matchSingle(const oclMat &query, const oclMat &train, + oclMat &trainIdx, oclMat &distance, + const oclMat &mask = oclMat()); + + // Download trainIdx and distance and convert it to CPU vector with DMatch + static void matchDownload(const oclMat &trainIdx, const oclMat &distance, std::vector<DMatch> &matches); + // Convert trainIdx and distance to vector with DMatch + static void matchConvert(const Mat &trainIdx, const Mat &distance, std::vector<DMatch> &matches); + + // Find one best match for each query descriptor + void match(const oclMat &query, const oclMat &train, std::vector<DMatch> &matches, const oclMat &mask = oclMat()); + + // Make gpu collection of trains and masks in suitable format for matchCollection function + void makeGpuCollection(oclMat &trainCollection, oclMat &maskCollection, const std::vector<oclMat> &masks = std::vector<oclMat>()); + + + // Find one best match from train collection for each query descriptor + void matchCollection(const oclMat &query, const oclMat &trainCollection, + oclMat &trainIdx, oclMat &imgIdx, oclMat &distance, + const oclMat &masks = oclMat()); + + // Download trainIdx, imgIdx and distance and convert it to vector with DMatch + static void matchDownload(const oclMat &trainIdx, const oclMat &imgIdx, const oclMat &distance, std::vector<DMatch> &matches); + // Convert trainIdx, imgIdx and distance to vector with DMatch + static void matchConvert(const Mat &trainIdx, const Mat &imgIdx, const Mat &distance, std::vector<DMatch> &matches); + + // Find one best match from train collection for each query descriptor. + void match(const oclMat &query, std::vector<DMatch> &matches, const std::vector<oclMat> &masks = std::vector<oclMat>()); + + // Find k best matches for each query descriptor (in increasing order of distances) + void knnMatchSingle(const oclMat &query, const oclMat &train, + oclMat &trainIdx, oclMat &distance, oclMat &allDist, int k, + const oclMat &mask = oclMat()); + + // Download trainIdx and distance and convert it to vector with DMatch + // compactResult is used when mask is not empty. If compactResult is false matches + // vector will have the same size as queryDescriptors rows. If compactResult is true + // matches vector will not contain matches for fully masked out query descriptors. + static void knnMatchDownload(const oclMat &trainIdx, const oclMat &distance, + std::vector< std::vector<DMatch> > &matches, bool compactResult = false); + + // Convert trainIdx and distance to vector with DMatch + static void knnMatchConvert(const Mat &trainIdx, const Mat &distance, + std::vector< std::vector<DMatch> > &matches, bool compactResult = false); + + // Find k best matches for each query descriptor (in increasing order of distances). + // compactResult is used when mask is not empty. If compactResult is false matches + // vector will have the same size as queryDescriptors rows. If compactResult is true + // matches vector will not contain matches for fully masked out query descriptors. + void knnMatch(const oclMat &query, const oclMat &train, + std::vector< std::vector<DMatch> > &matches, int k, const oclMat &mask = oclMat(), + bool compactResult = false); + + // Find k best matches from train collection for each query descriptor (in increasing order of distances) + void knnMatch2Collection(const oclMat &query, const oclMat &trainCollection, + oclMat &trainIdx, oclMat &imgIdx, oclMat &distance, + const oclMat &maskCollection = oclMat()); + + // Download trainIdx and distance and convert it to vector with DMatch + // compactResult is used when mask is not empty. If compactResult is false matches + // vector will have the same size as queryDescriptors rows. If compactResult is true + // matches vector will not contain matches for fully masked out query descriptors. + static void knnMatch2Download(const oclMat &trainIdx, const oclMat &imgIdx, const oclMat &distance, + std::vector< std::vector<DMatch> > &matches, bool compactResult = false); + + // Convert trainIdx and distance to vector with DMatch + static void knnMatch2Convert(const Mat &trainIdx, const Mat &imgIdx, const Mat &distance, + std::vector< std::vector<DMatch> > &matches, bool compactResult = false); + + // Find k best matches for each query descriptor (in increasing order of distances). + // compactResult is used when mask is not empty. If compactResult is false matches + // vector will have the same size as queryDescriptors rows. If compactResult is true + // matches vector will not contain matches for fully masked out query descriptors. + void knnMatch(const oclMat &query, std::vector< std::vector<DMatch> > &matches, int k, + const std::vector<oclMat> &masks = std::vector<oclMat>(), bool compactResult = false); + + // Find best matches for each query descriptor which have distance less than maxDistance. + // nMatches.at<int>(0, queryIdx) will contain matches count for queryIdx. + // carefully nMatches can be greater than trainIdx.cols - it means that matcher didn't find all matches, + // because it didn't have enough memory. + // If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nTrain / 100), 10), + // otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches + // Matches doesn't sorted. + void radiusMatchSingle(const oclMat &query, const oclMat &train, + oclMat &trainIdx, oclMat &distance, oclMat &nMatches, float maxDistance, + const oclMat &mask = oclMat()); + + // Download trainIdx, nMatches and distance and convert it to vector with DMatch. + // matches will be sorted in increasing order of distances. + // compactResult is used when mask is not empty. If compactResult is false matches + // vector will have the same size as queryDescriptors rows. If compactResult is true + // matches vector will not contain matches for fully masked out query descriptors. + static void radiusMatchDownload(const oclMat &trainIdx, const oclMat &distance, const oclMat &nMatches, + std::vector< std::vector<DMatch> > &matches, bool compactResult = false); + // Convert trainIdx, nMatches and distance to vector with DMatch. + static void radiusMatchConvert(const Mat &trainIdx, const Mat &distance, const Mat &nMatches, + std::vector< std::vector<DMatch> > &matches, bool compactResult = false); + // Find best matches for each query descriptor which have distance less than maxDistance + // in increasing order of distances). + void radiusMatch(const oclMat &query, const oclMat &train, + std::vector< std::vector<DMatch> > &matches, float maxDistance, + const oclMat &mask = oclMat(), bool compactResult = false); + // Find best matches for each query descriptor which have distance less than maxDistance. + // If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nQuery / 100), 10), + // otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches + // Matches doesn't sorted. + void radiusMatchCollection(const oclMat &query, oclMat &trainIdx, oclMat &imgIdx, oclMat &distance, oclMat &nMatches, float maxDistance, + const std::vector<oclMat> &masks = std::vector<oclMat>()); + // Download trainIdx, imgIdx, nMatches and distance and convert it to vector with DMatch. + // matches will be sorted in increasing order of distances. + // compactResult is used when mask is not empty. If compactResult is false matches + // vector will have the same size as queryDescriptors rows. If compactResult is true + // matches vector will not contain matches for fully masked out query descriptors. + static void radiusMatchDownload(const oclMat &trainIdx, const oclMat &imgIdx, const oclMat &distance, const oclMat &nMatches, + std::vector< std::vector<DMatch> > &matches, bool compactResult = false); + // Convert trainIdx, nMatches and distance to vector with DMatch. + static void radiusMatchConvert(const Mat &trainIdx, const Mat &imgIdx, const Mat &distance, const Mat &nMatches, + std::vector< std::vector<DMatch> > &matches, bool compactResult = false); + // Find best matches from train collection for each query descriptor which have distance less than + // maxDistance (in increasing order of distances). + void radiusMatch(const oclMat &query, std::vector< std::vector<DMatch> > &matches, float maxDistance, + const std::vector<oclMat> &masks = std::vector<oclMat>(), bool compactResult = false); + DistType distType; + private: + std::vector<oclMat> trainDescCollection; + }; + + template <class Distance> + class CV_EXPORTS BruteForceMatcher_OCL; + + template <typename T> + class CV_EXPORTS BruteForceMatcher_OCL< L1<T> > : public BruteForceMatcher_OCL_base + { + public: + explicit BruteForceMatcher_OCL() : BruteForceMatcher_OCL_base(L1Dist) {} + explicit BruteForceMatcher_OCL(L1<T> /*d*/) : BruteForceMatcher_OCL_base(L1Dist) {} + }; + + template <typename T> + class CV_EXPORTS BruteForceMatcher_OCL< L2<T> > : public BruteForceMatcher_OCL_base + { + public: + explicit BruteForceMatcher_OCL() : BruteForceMatcher_OCL_base(L2Dist) {} + explicit BruteForceMatcher_OCL(L2<T> /*d*/) : BruteForceMatcher_OCL_base(L2Dist) {} + }; + + template <> class CV_EXPORTS BruteForceMatcher_OCL< Hamming > : public BruteForceMatcher_OCL_base + { + public: + explicit BruteForceMatcher_OCL() : BruteForceMatcher_OCL_base(HammingDist) {} + explicit BruteForceMatcher_OCL(Hamming /*d*/) : BruteForceMatcher_OCL_base(HammingDist) {} + }; + + class CV_EXPORTS BFMatcher_OCL : public BruteForceMatcher_OCL_base + { + public: + explicit BFMatcher_OCL(int norm = NORM_L2) : BruteForceMatcher_OCL_base(norm == NORM_L1 ? L1Dist : norm == NORM_L2 ? L2Dist : HammingDist) {} + }; + + class CV_EXPORTS GoodFeaturesToTrackDetector_OCL + { + public: + explicit GoodFeaturesToTrackDetector_OCL(int maxCorners = 1000, double qualityLevel = 0.01, double minDistance = 0.0, + int blockSize = 3, bool useHarrisDetector = false, double harrisK = 0.04); + + //! return 1 rows matrix with CV_32FC2 type + void operator ()(const oclMat& image, oclMat& corners, const oclMat& mask = oclMat()); + //! download points of type Point2f to a vector. the vector's content will be erased + void downloadPoints(const oclMat &points, vector<Point2f> &points_v); + + int maxCorners; + double qualityLevel; + double minDistance; + + int blockSize; + bool useHarrisDetector; + double harrisK; + void releaseMemory() + { + Dx_.release(); + Dy_.release(); + eig_.release(); + minMaxbuf_.release(); + tmpCorners_.release(); + } + private: + oclMat Dx_; + oclMat Dy_; + oclMat eig_; + oclMat eig_minmax_; + oclMat minMaxbuf_; + oclMat tmpCorners_; + oclMat counter_; + }; + + inline GoodFeaturesToTrackDetector_OCL::GoodFeaturesToTrackDetector_OCL(int maxCorners_, double qualityLevel_, double minDistance_, + int blockSize_, bool useHarrisDetector_, double harrisK_) + { + maxCorners = maxCorners_; + qualityLevel = qualityLevel_; + minDistance = minDistance_; + blockSize = blockSize_; + useHarrisDetector = useHarrisDetector_; + harrisK = harrisK_; + } + + /////////////////////////////// PyrLKOpticalFlow ///////////////////////////////////// + class CV_EXPORTS PyrLKOpticalFlow + { + public: + PyrLKOpticalFlow() + { + winSize = Size(21, 21); + maxLevel = 3; + iters = 30; + derivLambda = 0.5; + useInitialFlow = false; + minEigThreshold = 1e-4f; + getMinEigenVals = false; + isDeviceArch11_ = false; + } + + void sparse(const oclMat &prevImg, const oclMat &nextImg, const oclMat &prevPts, oclMat &nextPts, + oclMat &status, oclMat *err = 0); + void dense(const oclMat &prevImg, const oclMat &nextImg, oclMat &u, oclMat &v, oclMat *err = 0); + Size winSize; + int maxLevel; + int iters; + double derivLambda; + bool useInitialFlow; + float minEigThreshold; + bool getMinEigenVals; + void releaseMemory() + { + dx_calcBuf_.release(); + dy_calcBuf_.release(); + + prevPyr_.clear(); + nextPyr_.clear(); + + dx_buf_.release(); + dy_buf_.release(); + } + private: + void calcSharrDeriv(const oclMat &src, oclMat &dx, oclMat &dy); + void buildImagePyramid(const oclMat &img0, vector<oclMat> &pyr, bool withBorder); + + oclMat dx_calcBuf_; + oclMat dy_calcBuf_; + + vector<oclMat> prevPyr_; + vector<oclMat> nextPyr_; + + oclMat dx_buf_; + oclMat dy_buf_; + oclMat uPyr_[2]; + oclMat vPyr_[2]; + bool isDeviceArch11_; + }; + + class CV_EXPORTS FarnebackOpticalFlow + { + public: + FarnebackOpticalFlow(); + + int numLevels; + double pyrScale; + bool fastPyramids; + int winSize; + int numIters; + int polyN; + double polySigma; + int flags; + + void operator ()(const oclMat &frame0, const oclMat &frame1, oclMat &flowx, oclMat &flowy); + + void releaseMemory(); + + private: + void setGaussianBlurKernel(const float *c_gKer, int ksizeHalf); + + void gaussianBlurOcl(const oclMat &src, int ksizeHalf, oclMat &dst); + + void polynomialExpansionOcl( + const oclMat &src, int polyN, oclMat &dst); + + void gaussianBlur5Ocl( + const oclMat &src, int ksizeHalf, oclMat &dst); + + void prepareGaussian( + int n, double sigma, float *g, float *xg, float *xxg, + double &ig11, double &ig03, double &ig33, double &ig55); + + void setPolynomialExpansionConsts(int n, double sigma); + + void updateFlow_boxFilter( + const oclMat& R0, const oclMat& R1, oclMat& flowx, oclMat &flowy, + oclMat& M, oclMat &bufM, int blockSize, bool updateMatrices); + + void updateFlow_gaussianBlur( + const oclMat& R0, const oclMat& R1, oclMat& flowx, oclMat& flowy, + oclMat& M, oclMat &bufM, int blockSize, bool updateMatrices); + + oclMat frames_[2]; + oclMat pyrLevel_[2], M_, bufM_, R_[2], blurredFrame_[2]; + std::vector<oclMat> pyramid0_, pyramid1_; + float ig[4]; + oclMat gMat; + oclMat xgMat; + oclMat xxgMat; + oclMat gKerMat; + }; + + //////////////// build warping maps //////////////////// + //! builds plane warping maps + CV_EXPORTS void buildWarpPlaneMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat &R, const Mat &T, float scale, oclMat &map_x, oclMat &map_y); + //! builds cylindrical warping maps + CV_EXPORTS void buildWarpCylindricalMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat &R, float scale, oclMat &map_x, oclMat &map_y); + //! builds spherical warping maps + CV_EXPORTS void buildWarpSphericalMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat &R, float scale, oclMat &map_x, oclMat &map_y); + //! builds Affine warping maps + CV_EXPORTS void buildWarpAffineMaps(const Mat &M, bool inverse, Size dsize, oclMat &xmap, oclMat &ymap); + + //! builds Perspective warping maps + CV_EXPORTS void buildWarpPerspectiveMaps(const Mat &M, bool inverse, Size dsize, oclMat &xmap, oclMat &ymap); + + ///////////////////////////////////// interpolate frames ////////////////////////////////////////////// + //! Interpolate frames (images) using provided optical flow (displacement field). + //! frame0 - frame 0 (32-bit floating point images, single channel) + //! frame1 - frame 1 (the same type and size) + //! fu - forward horizontal displacement + //! fv - forward vertical displacement + //! bu - backward horizontal displacement + //! bv - backward vertical displacement + //! pos - new frame position + //! newFrame - new frame + //! buf - temporary buffer, will have width x 6*height size, CV_32FC1 type and contain 6 oclMat; + //! occlusion masks 0, occlusion masks 1, + //! interpolated forward flow 0, interpolated forward flow 1, + //! interpolated backward flow 0, interpolated backward flow 1 + //! + CV_EXPORTS void interpolateFrames(const oclMat &frame0, const oclMat &frame1, + const oclMat &fu, const oclMat &fv, + const oclMat &bu, const oclMat &bv, + float pos, oclMat &newFrame, oclMat &buf); + + //! computes moments of the rasterized shape or a vector of points + //! _array should be a vector a points standing for the contour + CV_EXPORTS Moments ocl_moments(InputArray contour); + //! src should be a general image uploaded to the GPU. + //! the supported oclMat type are CV_8UC1, CV_16UC1, CV_16SC1, CV_32FC1 and CV_64FC1 + //! to use type of CV_64FC1, the GPU should support CV_64FC1 + CV_EXPORTS Moments ocl_moments(oclMat& src, bool binary); + + class CV_EXPORTS StereoBM_OCL + { + public: + enum { BASIC_PRESET = 0, PREFILTER_XSOBEL = 1 }; + + enum { DEFAULT_NDISP = 64, DEFAULT_WINSZ = 19 }; + + //! the default constructor + StereoBM_OCL(); + //! the full constructor taking the camera-specific preset, number of disparities and the SAD window size. ndisparities must be multiple of 8. + StereoBM_OCL(int preset, int ndisparities = DEFAULT_NDISP, int winSize = DEFAULT_WINSZ); + + //! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair + //! Output disparity has CV_8U type. + void operator() ( const oclMat &left, const oclMat &right, oclMat &disparity); + + //! Some heuristics that tries to estmate + // if current GPU will be faster then CPU in this algorithm. + // It queries current active device. + static bool checkIfGpuCallReasonable(); + + int preset; + int ndisp; + int winSize; + + // If avergeTexThreshold == 0 => post procesing is disabled + // If avergeTexThreshold != 0 then disparity is set 0 in each point (x,y) where for left image + // SumOfHorizontalGradiensInWindow(x, y, winSize) < (winSize * winSize) * avergeTexThreshold + // i.e. input left image is low textured. + float avergeTexThreshold; + private: + oclMat minSSD, leBuf, riBuf; + }; + + class CV_EXPORTS StereoBeliefPropagation + { + public: + enum { DEFAULT_NDISP = 64 }; + enum { DEFAULT_ITERS = 5 }; + enum { DEFAULT_LEVELS = 5 }; + static void estimateRecommendedParams(int width, int height, int &ndisp, int &iters, int &levels); + explicit StereoBeliefPropagation(int ndisp = DEFAULT_NDISP, + int iters = DEFAULT_ITERS, + int levels = DEFAULT_LEVELS, + int msg_type = CV_16S); + StereoBeliefPropagation(int ndisp, int iters, int levels, + float max_data_term, float data_weight, + float max_disc_term, float disc_single_jump, + int msg_type = CV_32F); + void operator()(const oclMat &left, const oclMat &right, oclMat &disparity); + void operator()(const oclMat &data, oclMat &disparity); + int ndisp; + int iters; + int levels; + float max_data_term; + float data_weight; + float max_disc_term; + float disc_single_jump; + int msg_type; + private: + oclMat u, d, l, r, u2, d2, l2, r2; + std::vector<oclMat> datas; + oclMat out; + }; + + class CV_EXPORTS StereoConstantSpaceBP + { + public: + enum { DEFAULT_NDISP = 128 }; + enum { DEFAULT_ITERS = 8 }; + enum { DEFAULT_LEVELS = 4 }; + enum { DEFAULT_NR_PLANE = 4 }; + static void estimateRecommendedParams(int width, int height, int &ndisp, int &iters, int &levels, int &nr_plane); + explicit StereoConstantSpaceBP( + int ndisp = DEFAULT_NDISP, + int iters = DEFAULT_ITERS, + int levels = DEFAULT_LEVELS, + int nr_plane = DEFAULT_NR_PLANE, + int msg_type = CV_32F); + StereoConstantSpaceBP(int ndisp, int iters, int levels, int nr_plane, + float max_data_term, float data_weight, float max_disc_term, float disc_single_jump, + int min_disp_th = 0, + int msg_type = CV_32F); + void operator()(const oclMat &left, const oclMat &right, oclMat &disparity); + int ndisp; + int iters; + int levels; + int nr_plane; + float max_data_term; + float data_weight; + float max_disc_term; + float disc_single_jump; + int min_disp_th; + int msg_type; + bool use_local_init_data_cost; + private: + oclMat u[2], d[2], l[2], r[2]; + oclMat disp_selected_pyr[2]; + oclMat data_cost; + oclMat data_cost_selected; + oclMat temp; + oclMat out; + }; + + // Implementation of the Zach, Pock and Bischof Dual TV-L1 Optical Flow method + // + // see reference: + // [1] C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow". + // [2] Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation". + class CV_EXPORTS OpticalFlowDual_TVL1_OCL + { + public: + OpticalFlowDual_TVL1_OCL(); + + void operator ()(const oclMat& I0, const oclMat& I1, oclMat& flowx, oclMat& flowy); + + void collectGarbage(); + + /** + * Time step of the numerical scheme. + */ + double tau; + + /** + * Weight parameter for the data term, attachment parameter. + * This is the most relevant parameter, which determines the smoothness of the output. + * The smaller this parameter is, the smoother the solutions we obtain. + * It depends on the range of motions of the images, so its value should be adapted to each image sequence. + */ + double lambda; + + /** + * Weight parameter for (u - v)^2, tightness parameter. + * It serves as a link between the attachment and the regularization terms. + * In theory, it should have a small value in order to maintain both parts in correspondence. + * The method is stable for a large range of values of this parameter. + */ + double theta; + + /** + * Number of scales used to create the pyramid of images. + */ + int nscales; + + /** + * Number of warpings per scale. + * Represents the number of times that I1(x+u0) and grad( I1(x+u0) ) are computed per scale. + * This is a parameter that assures the stability of the method. + * It also affects the running time, so it is a compromise between speed and accuracy. + */ + int warps; + + /** + * Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time. + * A small value will yield more accurate solutions at the expense of a slower convergence. + */ + double epsilon; + + /** + * Stopping criterion iterations number used in the numerical scheme. + */ + int iterations; + + bool useInitialFlow; + + private: + void procOneScale(const oclMat& I0, const oclMat& I1, oclMat& u1, oclMat& u2); + + std::vector<oclMat> I0s; + std::vector<oclMat> I1s; + std::vector<oclMat> u1s; + std::vector<oclMat> u2s; + + oclMat I1x_buf; + oclMat I1y_buf; + + oclMat I1w_buf; + oclMat I1wx_buf; + oclMat I1wy_buf; + + oclMat grad_buf; + oclMat rho_c_buf; + + oclMat p11_buf; + oclMat p12_buf; + oclMat p21_buf; + oclMat p22_buf; + + oclMat diff_buf; + oclMat norm_buf; + }; + // current supported sorting methods + enum + { + SORT_BITONIC, // only support power-of-2 buffer size + SORT_SELECTION, // cannot sort duplicate keys + SORT_MERGE, + SORT_RADIX // only support signed int/float keys(CV_32S/CV_32F) + }; + //! Returns the sorted result of all the elements in input based on equivalent keys. + // + // The element unit in the values to be sorted is determined from the data type, + // i.e., a CV_32FC2 input {a1a2, b1b2} will be considered as two elements, regardless its + // matrix dimension. + // both keys and values will be sorted inplace + // Key needs to be single channel oclMat. + // + // Example: + // input - + // keys = {2, 3, 1} (CV_8UC1) + // values = {10,5, 4,3, 6,2} (CV_8UC2) + // sortByKey(keys, values, SORT_SELECTION, false); + // output - + // keys = {1, 2, 3} (CV_8UC1) + // values = {6,2, 10,5, 4,3} (CV_8UC2) + CV_EXPORTS void sortByKey(oclMat& keys, oclMat& values, int method, bool isGreaterThan = false); + /*!Base class for MOG and MOG2!*/ + class CV_EXPORTS BackgroundSubtractor + { + public: + //! the virtual destructor + virtual ~BackgroundSubtractor(); + //! the update operator that takes the next video frame and returns the current foreground mask as 8-bit binary image. + virtual void operator()(const oclMat& image, oclMat& fgmask, float learningRate); + + //! computes a background image + virtual void getBackgroundImage(oclMat& backgroundImage) const = 0; + }; + /*! + Gaussian Mixture-based Backbround/Foreground Segmentation Algorithm + + The class implements the following algorithm: + "An improved adaptive background mixture model for real-time tracking with shadow detection" + P. KadewTraKuPong and R. Bowden, + Proc. 2nd European Workshp on Advanced Video-Based Surveillance Systems, 2001." + http://personal.ee.surrey.ac.uk/Personal/R.Bowden/publications/avbs01/avbs01.pdf + */ + class CV_EXPORTS MOG: public cv::ocl::BackgroundSubtractor + { + public: + //! the default constructor + MOG(int nmixtures = -1); + + //! re-initiaization method + void initialize(Size frameSize, int frameType); + + //! the update operator + void operator()(const oclMat& frame, oclMat& fgmask, float learningRate = 0.f); + + //! computes a background image which are the mean of all background gaussians + void getBackgroundImage(oclMat& backgroundImage) const; + + //! releases all inner buffers + void release(); + + int history; + float varThreshold; + float backgroundRatio; + float noiseSigma; + + private: + int nmixtures_; + + Size frameSize_; + int frameType_; + int nframes_; + + oclMat weight_; + oclMat sortKey_; + oclMat mean_; + oclMat var_; + }; + + /*! + The class implements the following algorithm: + "Improved adaptive Gausian mixture model for background subtraction" + Z.Zivkovic + International Conference Pattern Recognition, UK, August, 2004. + http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf + */ + class CV_EXPORTS MOG2: public cv::ocl::BackgroundSubtractor + { + public: + //! the default constructor + MOG2(int nmixtures = -1); + + //! re-initiaization method + void initialize(Size frameSize, int frameType); + + //! the update operator + void operator()(const oclMat& frame, oclMat& fgmask, float learningRate = -1.0f); + + //! computes a background image which are the mean of all background gaussians + void getBackgroundImage(oclMat& backgroundImage) const; + + //! releases all inner buffers + void release(); + + // parameters + // you should call initialize after parameters changes + + int history; + + //! here it is the maximum allowed number of mixture components. + //! Actual number is determined dynamically per pixel + float varThreshold; + // threshold on the squared Mahalanobis distance to decide if it is well described + // by the background model or not. Related to Cthr from the paper. + // This does not influence the update of the background. A typical value could be 4 sigma + // and that is varThreshold=4*4=16; Corresponds to Tb in the paper. + + ///////////////////////// + // less important parameters - things you might change but be carefull + //////////////////////// + + float backgroundRatio; + // corresponds to fTB=1-cf from the paper + // TB - threshold when the component becomes significant enough to be included into + // the background model. It is the TB=1-cf from the paper. So I use cf=0.1 => TB=0. + // For alpha=0.001 it means that the mode should exist for approximately 105 frames before + // it is considered foreground + // float noiseSigma; + float varThresholdGen; + + //correspondts to Tg - threshold on the squared Mahalan. dist. to decide + //when a sample is close to the existing components. If it is not close + //to any a new component will be generated. I use 3 sigma => Tg=3*3=9. + //Smaller Tg leads to more generated components and higher Tg might make + //lead to small number of components but they can grow too large + float fVarInit; + float fVarMin; + float fVarMax; + + //initial variance for the newly generated components. + //It will will influence the speed of adaptation. A good guess should be made. + //A simple way is to estimate the typical standard deviation from the images. + //I used here 10 as a reasonable value + // min and max can be used to further control the variance + float fCT; //CT - complexity reduction prior + //this is related to the number of samples needed to accept that a component + //actually exists. We use CT=0.05 of all the samples. By setting CT=0 you get + //the standard Stauffer&Grimson algorithm (maybe not exact but very similar) + + //shadow detection parameters + bool bShadowDetection; //default 1 - do shadow detection + unsigned char nShadowDetection; //do shadow detection - insert this value as the detection result - 127 default value + float fTau; + // Tau - shadow threshold. The shadow is detected if the pixel is darker + //version of the background. Tau is a threshold on how much darker the shadow can be. + //Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow + //See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003. + + private: + int nmixtures_; + + Size frameSize_; + int frameType_; + int nframes_; + + oclMat weight_; + oclMat variance_; + oclMat mean_; + + oclMat bgmodelUsedModes_; //keep track of number of modes per pixel + }; + + /*!***************Kalman Filter*************!*/ + class CV_EXPORTS KalmanFilter + { + public: + KalmanFilter(); + //! the full constructor taking the dimensionality of the state, of the measurement and of the control vector + KalmanFilter(int dynamParams, int measureParams, int controlParams=0, int type=CV_32F); + //! re-initializes Kalman filter. The previous content is destroyed. + void init(int dynamParams, int measureParams, int controlParams=0, int type=CV_32F); + + const oclMat& predict(const oclMat& control=oclMat()); + const oclMat& correct(const oclMat& measurement); + + oclMat statePre; //!< predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k) + oclMat statePost; //!< corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k)) + oclMat transitionMatrix; //!< state transition matrix (A) + oclMat controlMatrix; //!< control matrix (B) (not used if there is no control) + oclMat measurementMatrix; //!< measurement matrix (H) + oclMat processNoiseCov; //!< process noise covariance matrix (Q) + oclMat measurementNoiseCov;//!< measurement noise covariance matrix (R) + oclMat errorCovPre; //!< priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q)*/ + oclMat gain; //!< Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R) + oclMat errorCovPost; //!< posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k) + private: + oclMat temp1; + oclMat temp2; + oclMat temp3; + oclMat temp4; + oclMat temp5; + }; + + /*!***************K Nearest Neighbour*************!*/ + class CV_EXPORTS KNearestNeighbour: public CvKNearest + { + public: + KNearestNeighbour(); + ~KNearestNeighbour(); + + bool train(const Mat& trainData, Mat& labels, Mat& sampleIdx = Mat().setTo(Scalar::all(0)), + bool isRegression = false, int max_k = 32, bool updateBase = false); + + void clear(); + + void find_nearest(const oclMat& samples, int k, oclMat& lables); + + private: + oclMat samples_ocl; + }; + + /*!*************** SVM *************!*/ + class CV_EXPORTS CvSVM_OCL : public CvSVM + { + public: + CvSVM_OCL(); + + CvSVM_OCL(const cv::Mat& trainData, const cv::Mat& responses, + const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(), + CvSVMParams params=CvSVMParams()); + CV_WRAP float predict( const int row_index, Mat& src, bool returnDFVal=false ) const; + CV_WRAP void predict( cv::InputArray samples, cv::OutputArray results ) const; + CV_WRAP float predict( const cv::Mat& sample, bool returnDFVal=false ) const; + float predict( const CvMat* samples, CV_OUT CvMat* results ) const; + + protected: + float predict( const int row_index, int row_len, Mat& src, bool returnDFVal=false ) const; + void create_kernel(); + void create_solver(); + }; + + /*!*************** END *************!*/ + } +} +#if defined _MSC_VER && _MSC_VER >= 1200 +# pragma warning( push) +# pragma warning( disable: 4267) +#endif +#include "opencv2/ocl/matrix_operations.hpp" +#if defined _MSC_VER && _MSC_VER >= 1200 +# pragma warning( pop) +#endif + +#endif /* __OPENCV_OCL_HPP__ */ |