summaryrefslogtreecommitdiff
path: root/thirdparty/includes/GSL/gsl/gsl_sf_hyperg.h
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/includes/GSL/gsl/gsl_sf_hyperg.h')
-rw-r--r--thirdparty/includes/GSL/gsl/gsl_sf_hyperg.h154
1 files changed, 154 insertions, 0 deletions
diff --git a/thirdparty/includes/GSL/gsl/gsl_sf_hyperg.h b/thirdparty/includes/GSL/gsl/gsl_sf_hyperg.h
new file mode 100644
index 0000000..8366b88
--- /dev/null
+++ b/thirdparty/includes/GSL/gsl/gsl_sf_hyperg.h
@@ -0,0 +1,154 @@
+/* specfunc/gsl_sf_hyperg.h
+ *
+ * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 3 of the License, or (at
+ * your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+/* Author: G. Jungman */
+
+#ifndef __GSL_SF_HYPERG_H__
+#define __GSL_SF_HYPERG_H__
+
+#include <gsl/gsl_sf_result.h>
+
+#undef __BEGIN_DECLS
+#undef __END_DECLS
+#ifdef __cplusplus
+# define __BEGIN_DECLS extern "C" {
+# define __END_DECLS }
+#else
+# define __BEGIN_DECLS /* empty */
+# define __END_DECLS /* empty */
+#endif
+
+__BEGIN_DECLS
+
+
+/* Hypergeometric function related to Bessel functions
+ * 0F1[c,x] =
+ * Gamma[c] x^(1/2(1-c)) I_{c-1}(2 Sqrt[x])
+ * Gamma[c] (-x)^(1/2(1-c)) J_{c-1}(2 Sqrt[-x])
+ *
+ * exceptions: GSL_EOVRFLW, GSL_EUNDRFLW
+ */
+int gsl_sf_hyperg_0F1_e(double c, double x, gsl_sf_result * result);
+double gsl_sf_hyperg_0F1(const double c, const double x);
+
+
+/* Confluent hypergeometric function for integer parameters.
+ * 1F1[m,n,x] = M(m,n,x)
+ *
+ * exceptions:
+ */
+int gsl_sf_hyperg_1F1_int_e(const int m, const int n, const double x, gsl_sf_result * result);
+double gsl_sf_hyperg_1F1_int(const int m, const int n, double x);
+
+
+/* Confluent hypergeometric function.
+ * 1F1[a,b,x] = M(a,b,x)
+ *
+ * exceptions:
+ */
+int gsl_sf_hyperg_1F1_e(const double a, const double b, const double x, gsl_sf_result * result);
+double gsl_sf_hyperg_1F1(double a, double b, double x);
+
+
+/* Confluent hypergeometric function for integer parameters.
+ * U(m,n,x)
+ *
+ * exceptions:
+ */
+int gsl_sf_hyperg_U_int_e(const int m, const int n, const double x, gsl_sf_result * result);
+double gsl_sf_hyperg_U_int(const int m, const int n, const double x);
+
+
+/* Confluent hypergeometric function for integer parameters.
+ * U(m,n,x)
+ *
+ * exceptions:
+ */
+int gsl_sf_hyperg_U_int_e10_e(const int m, const int n, const double x, gsl_sf_result_e10 * result);
+
+
+/* Confluent hypergeometric function.
+ * U(a,b,x)
+ *
+ * exceptions:
+ */
+int gsl_sf_hyperg_U_e(const double a, const double b, const double x, gsl_sf_result * result);
+double gsl_sf_hyperg_U(const double a, const double b, const double x);
+
+
+/* Confluent hypergeometric function.
+ * U(a,b,x)
+ *
+ * exceptions:
+ */
+int gsl_sf_hyperg_U_e10_e(const double a, const double b, const double x, gsl_sf_result_e10 * result);
+
+
+/* Gauss hypergeometric function 2F1[a,b,c,x]
+ * |x| < 1
+ *
+ * exceptions:
+ */
+int gsl_sf_hyperg_2F1_e(double a, double b, const double c, const double x, gsl_sf_result * result);
+double gsl_sf_hyperg_2F1(double a, double b, double c, double x);
+
+
+/* Gauss hypergeometric function
+ * 2F1[aR + I aI, aR - I aI, c, x]
+ * |x| < 1
+ *
+ * exceptions:
+ */
+int gsl_sf_hyperg_2F1_conj_e(const double aR, const double aI, const double c, const double x, gsl_sf_result * result);
+double gsl_sf_hyperg_2F1_conj(double aR, double aI, double c, double x);
+
+
+/* Renormalized Gauss hypergeometric function
+ * 2F1[a,b,c,x] / Gamma[c]
+ * |x| < 1
+ *
+ * exceptions:
+ */
+int gsl_sf_hyperg_2F1_renorm_e(const double a, const double b, const double c, const double x, gsl_sf_result * result);
+double gsl_sf_hyperg_2F1_renorm(double a, double b, double c, double x);
+
+
+/* Renormalized Gauss hypergeometric function
+ * 2F1[aR + I aI, aR - I aI, c, x] / Gamma[c]
+ * |x| < 1
+ *
+ * exceptions:
+ */
+int gsl_sf_hyperg_2F1_conj_renorm_e(const double aR, const double aI, const double c, const double x, gsl_sf_result * result);
+double gsl_sf_hyperg_2F1_conj_renorm(double aR, double aI, double c, double x);
+
+
+/* Mysterious hypergeometric function. The series representation
+ * is a divergent hypergeometric series. However, for x < 0 we
+ * have 2F0(a,b,x) = (-1/x)^a U(a,1+a-b,-1/x)
+ *
+ * exceptions: GSL_EDOM
+ */
+int gsl_sf_hyperg_2F0_e(const double a, const double b, const double x, gsl_sf_result * result);
+double gsl_sf_hyperg_2F0(const double a, const double b, const double x);
+
+
+__END_DECLS
+
+#endif /* __GSL_SF_HYPERG_H__ */