diff options
Diffstat (limited to 'thirdparty/includes/GSL/gsl/gsl_sf_ellint.h')
-rw-r--r-- | thirdparty/includes/GSL/gsl/gsl_sf_ellint.h | 112 |
1 files changed, 112 insertions, 0 deletions
diff --git a/thirdparty/includes/GSL/gsl/gsl_sf_ellint.h b/thirdparty/includes/GSL/gsl/gsl_sf_ellint.h new file mode 100644 index 0000000..7f68f0e --- /dev/null +++ b/thirdparty/includes/GSL/gsl/gsl_sf_ellint.h @@ -0,0 +1,112 @@ +/* specfunc/gsl_sf_ellint.h + * + * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 3 of the License, or (at + * your option) any later version. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. + */ + +/* Author: G. Jungman */ + +#ifndef __GSL_SF_ELLINT_H__ +#define __GSL_SF_ELLINT_H__ + +#include <gsl/gsl_mode.h> +#include <gsl/gsl_sf_result.h> + +#undef __BEGIN_DECLS +#undef __END_DECLS +#ifdef __cplusplus +# define __BEGIN_DECLS extern "C" { +# define __END_DECLS } +#else +# define __BEGIN_DECLS /* empty */ +# define __END_DECLS /* empty */ +#endif + +__BEGIN_DECLS + + +/* Legendre form of complete elliptic integrals + * + * K(k) = Integral[1/Sqrt[1 - k^2 Sin[t]^2], {t, 0, Pi/2}] + * E(k) = Integral[ Sqrt[1 - k^2 Sin[t]^2], {t, 0, Pi/2}] + * + * exceptions: GSL_EDOM + */ +int gsl_sf_ellint_Kcomp_e(double k, gsl_mode_t mode, gsl_sf_result * result); +double gsl_sf_ellint_Kcomp(double k, gsl_mode_t mode); + +int gsl_sf_ellint_Ecomp_e(double k, gsl_mode_t mode, gsl_sf_result * result); +double gsl_sf_ellint_Ecomp(double k, gsl_mode_t mode); + +int gsl_sf_ellint_Pcomp_e(double k, double n, gsl_mode_t mode, gsl_sf_result * result); +double gsl_sf_ellint_Pcomp(double k, double n, gsl_mode_t mode); + +int gsl_sf_ellint_Dcomp_e(double k, gsl_mode_t mode, gsl_sf_result * result); +double gsl_sf_ellint_Dcomp(double k, gsl_mode_t mode); + + +/* Legendre form of incomplete elliptic integrals + * + * F(phi,k) = Integral[1/Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}] + * E(phi,k) = Integral[ Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}] + * P(phi,k,n) = Integral[(1 + n Sin[t]^2)^(-1)/Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}] + * D(phi,k,n) = R_D(1-Sin[phi]^2, 1-k^2 Sin[phi]^2, 1.0) + * + * F: [Carlson, Numerische Mathematik 33 (1979) 1, (4.1)] + * E: [Carlson, ", (4.2)] + * P: [Carlson, ", (4.3)] + * D: [Carlson, ", (4.4)] + * + * exceptions: GSL_EDOM + */ +int gsl_sf_ellint_F_e(double phi, double k, gsl_mode_t mode, gsl_sf_result * result); +double gsl_sf_ellint_F(double phi, double k, gsl_mode_t mode); + +int gsl_sf_ellint_E_e(double phi, double k, gsl_mode_t mode, gsl_sf_result * result); +double gsl_sf_ellint_E(double phi, double k, gsl_mode_t mode); + +int gsl_sf_ellint_P_e(double phi, double k, double n, gsl_mode_t mode, gsl_sf_result * result); +double gsl_sf_ellint_P(double phi, double k, double n, gsl_mode_t mode); + +int gsl_sf_ellint_D_e(double phi, double k, gsl_mode_t mode, gsl_sf_result * result); +double gsl_sf_ellint_D(double phi, double k, gsl_mode_t mode); + + +/* Carlson's symmetric basis of functions + * + * RC(x,y) = 1/2 Integral[(t+x)^(-1/2) (t+y)^(-1)], {t,0,Inf}] + * RD(x,y,z) = 3/2 Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-3/2), {t,0,Inf}] + * RF(x,y,z) = 1/2 Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2), {t,0,Inf}] + * RJ(x,y,z,p) = 3/2 Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2) (t+p)^(-1), {t,0,Inf}] + * + * exceptions: GSL_EDOM + */ +int gsl_sf_ellint_RC_e(double x, double y, gsl_mode_t mode, gsl_sf_result * result); +double gsl_sf_ellint_RC(double x, double y, gsl_mode_t mode); + +int gsl_sf_ellint_RD_e(double x, double y, double z, gsl_mode_t mode, gsl_sf_result * result); +double gsl_sf_ellint_RD(double x, double y, double z, gsl_mode_t mode); + +int gsl_sf_ellint_RF_e(double x, double y, double z, gsl_mode_t mode, gsl_sf_result * result); +double gsl_sf_ellint_RF(double x, double y, double z, gsl_mode_t mode); + +int gsl_sf_ellint_RJ_e(double x, double y, double z, double p, gsl_mode_t mode, gsl_sf_result * result); +double gsl_sf_ellint_RJ(double x, double y, double z, double p, gsl_mode_t mode); + + +__END_DECLS + +#endif /* __GSL_SF_ELLINT_H__ */ |