summaryrefslogtreecommitdiff
path: root/src/fortran/lapack/zungtr.f
diff options
context:
space:
mode:
Diffstat (limited to 'src/fortran/lapack/zungtr.f')
-rw-r--r--src/fortran/lapack/zungtr.f184
1 files changed, 184 insertions, 0 deletions
diff --git a/src/fortran/lapack/zungtr.f b/src/fortran/lapack/zungtr.f
new file mode 100644
index 0000000..5de7c10
--- /dev/null
+++ b/src/fortran/lapack/zungtr.f
@@ -0,0 +1,184 @@
+ SUBROUTINE ZUNGTR( UPLO, N, A, LDA, TAU, WORK, LWORK, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER UPLO
+ INTEGER INFO, LDA, LWORK, N
+* ..
+* .. Array Arguments ..
+ COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+* ZUNGTR generates a complex unitary matrix Q which is defined as the
+* product of n-1 elementary reflectors of order N, as returned by
+* ZHETRD:
+*
+* if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),
+*
+* if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).
+*
+* Arguments
+* =========
+*
+* UPLO (input) CHARACTER*1
+* = 'U': Upper triangle of A contains elementary reflectors
+* from ZHETRD;
+* = 'L': Lower triangle of A contains elementary reflectors
+* from ZHETRD.
+*
+* N (input) INTEGER
+* The order of the matrix Q. N >= 0.
+*
+* A (input/output) COMPLEX*16 array, dimension (LDA,N)
+* On entry, the vectors which define the elementary reflectors,
+* as returned by ZHETRD.
+* On exit, the N-by-N unitary matrix Q.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= N.
+*
+* TAU (input) COMPLEX*16 array, dimension (N-1)
+* TAU(i) must contain the scalar factor of the elementary
+* reflector H(i), as returned by ZHETRD.
+*
+* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
+* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*
+* LWORK (input) INTEGER
+* The dimension of the array WORK. LWORK >= N-1.
+* For optimum performance LWORK >= (N-1)*NB, where NB is
+* the optimal blocksize.
+*
+* If LWORK = -1, then a workspace query is assumed; the routine
+* only calculates the optimal size of the WORK array, returns
+* this value as the first entry of the WORK array, and no error
+* message related to LWORK is issued by XERBLA.
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+*
+* =====================================================================
+*
+* .. Parameters ..
+ COMPLEX*16 ZERO, ONE
+ PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ),
+ $ ONE = ( 1.0D+0, 0.0D+0 ) )
+* ..
+* .. Local Scalars ..
+ LOGICAL LQUERY, UPPER
+ INTEGER I, IINFO, J, LWKOPT, NB
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ILAENV
+ EXTERNAL LSAME, ILAENV
+* ..
+* .. External Subroutines ..
+ EXTERNAL XERBLA, ZUNGQL, ZUNGQR
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments
+*
+ INFO = 0
+ LQUERY = ( LWORK.EQ.-1 )
+ UPPER = LSAME( UPLO, 'U' )
+ IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -4
+ ELSE IF( LWORK.LT.MAX( 1, N-1 ) .AND. .NOT.LQUERY ) THEN
+ INFO = -7
+ END IF
+*
+ IF( INFO.EQ.0 ) THEN
+ IF( UPPER ) THEN
+ NB = ILAENV( 1, 'ZUNGQL', ' ', N-1, N-1, N-1, -1 )
+ ELSE
+ NB = ILAENV( 1, 'ZUNGQR', ' ', N-1, N-1, N-1, -1 )
+ END IF
+ LWKOPT = MAX( 1, N-1 )*NB
+ WORK( 1 ) = LWKOPT
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZUNGTR', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 ) THEN
+ WORK( 1 ) = 1
+ RETURN
+ END IF
+*
+ IF( UPPER ) THEN
+*
+* Q was determined by a call to ZHETRD with UPLO = 'U'
+*
+* Shift the vectors which define the elementary reflectors one
+* column to the left, and set the last row and column of Q to
+* those of the unit matrix
+*
+ DO 20 J = 1, N - 1
+ DO 10 I = 1, J - 1
+ A( I, J ) = A( I, J+1 )
+ 10 CONTINUE
+ A( N, J ) = ZERO
+ 20 CONTINUE
+ DO 30 I = 1, N - 1
+ A( I, N ) = ZERO
+ 30 CONTINUE
+ A( N, N ) = ONE
+*
+* Generate Q(1:n-1,1:n-1)
+*
+ CALL ZUNGQL( N-1, N-1, N-1, A, LDA, TAU, WORK, LWORK, IINFO )
+*
+ ELSE
+*
+* Q was determined by a call to ZHETRD with UPLO = 'L'.
+*
+* Shift the vectors which define the elementary reflectors one
+* column to the right, and set the first row and column of Q to
+* those of the unit matrix
+*
+ DO 50 J = N, 2, -1
+ A( 1, J ) = ZERO
+ DO 40 I = J + 1, N
+ A( I, J ) = A( I, J-1 )
+ 40 CONTINUE
+ 50 CONTINUE
+ A( 1, 1 ) = ONE
+ DO 60 I = 2, N
+ A( I, 1 ) = ZERO
+ 60 CONTINUE
+ IF( N.GT.1 ) THEN
+*
+* Generate Q(2:n,2:n)
+*
+ CALL ZUNGQR( N-1, N-1, N-1, A( 2, 2 ), LDA, TAU, WORK,
+ $ LWORK, IINFO )
+ END IF
+ END IF
+ WORK( 1 ) = LWKOPT
+ RETURN
+*
+* End of ZUNGTR
+*
+ END