summaryrefslogtreecommitdiff
path: root/src/fortran/lapack/zungl2.f
diff options
context:
space:
mode:
Diffstat (limited to 'src/fortran/lapack/zungl2.f')
-rw-r--r--src/fortran/lapack/zungl2.f136
1 files changed, 136 insertions, 0 deletions
diff --git a/src/fortran/lapack/zungl2.f b/src/fortran/lapack/zungl2.f
new file mode 100644
index 0000000..502411b
--- /dev/null
+++ b/src/fortran/lapack/zungl2.f
@@ -0,0 +1,136 @@
+ SUBROUTINE ZUNGL2( M, N, K, A, LDA, TAU, WORK, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, K, LDA, M, N
+* ..
+* .. Array Arguments ..
+ COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+* ZUNGL2 generates an m-by-n complex matrix Q with orthonormal rows,
+* which is defined as the first m rows of a product of k elementary
+* reflectors of order n
+*
+* Q = H(k)' . . . H(2)' H(1)'
+*
+* as returned by ZGELQF.
+*
+* Arguments
+* =========
+*
+* M (input) INTEGER
+* The number of rows of the matrix Q. M >= 0.
+*
+* N (input) INTEGER
+* The number of columns of the matrix Q. N >= M.
+*
+* K (input) INTEGER
+* The number of elementary reflectors whose product defines the
+* matrix Q. M >= K >= 0.
+*
+* A (input/output) COMPLEX*16 array, dimension (LDA,N)
+* On entry, the i-th row must contain the vector which defines
+* the elementary reflector H(i), for i = 1,2,...,k, as returned
+* by ZGELQF in the first k rows of its array argument A.
+* On exit, the m by n matrix Q.
+*
+* LDA (input) INTEGER
+* The first dimension of the array A. LDA >= max(1,M).
+*
+* TAU (input) COMPLEX*16 array, dimension (K)
+* TAU(i) must contain the scalar factor of the elementary
+* reflector H(i), as returned by ZGELQF.
+*
+* WORK (workspace) COMPLEX*16 array, dimension (M)
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument has an illegal value
+*
+* =====================================================================
+*
+* .. Parameters ..
+ COMPLEX*16 ONE, ZERO
+ PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ),
+ $ ZERO = ( 0.0D+0, 0.0D+0 ) )
+* ..
+* .. Local Scalars ..
+ INTEGER I, J, L
+* ..
+* .. External Subroutines ..
+ EXTERNAL XERBLA, ZLACGV, ZLARF, ZSCAL
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC DCONJG, MAX
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments
+*
+ INFO = 0
+ IF( M.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( N.LT.M ) THEN
+ INFO = -2
+ ELSE IF( K.LT.0 .OR. K.GT.M ) THEN
+ INFO = -3
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -5
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZUNGL2', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( M.LE.0 )
+ $ RETURN
+*
+ IF( K.LT.M ) THEN
+*
+* Initialise rows k+1:m to rows of the unit matrix
+*
+ DO 20 J = 1, N
+ DO 10 L = K + 1, M
+ A( L, J ) = ZERO
+ 10 CONTINUE
+ IF( J.GT.K .AND. J.LE.M )
+ $ A( J, J ) = ONE
+ 20 CONTINUE
+ END IF
+*
+ DO 40 I = K, 1, -1
+*
+* Apply H(i)' to A(i:m,i:n) from the right
+*
+ IF( I.LT.N ) THEN
+ CALL ZLACGV( N-I, A( I, I+1 ), LDA )
+ IF( I.LT.M ) THEN
+ A( I, I ) = ONE
+ CALL ZLARF( 'Right', M-I, N-I+1, A( I, I ), LDA,
+ $ DCONJG( TAU( I ) ), A( I+1, I ), LDA, WORK )
+ END IF
+ CALL ZSCAL( N-I, -TAU( I ), A( I, I+1 ), LDA )
+ CALL ZLACGV( N-I, A( I, I+1 ), LDA )
+ END IF
+ A( I, I ) = ONE - DCONJG( TAU( I ) )
+*
+* Set A(i,1:i-1) to zero
+*
+ DO 30 L = 1, I - 1
+ A( I, L ) = ZERO
+ 30 CONTINUE
+ 40 CONTINUE
+ RETURN
+*
+* End of ZUNGL2
+*
+ END