summaryrefslogtreecommitdiff
path: root/src/fortran/lapack/ztrsyl.f
diff options
context:
space:
mode:
Diffstat (limited to 'src/fortran/lapack/ztrsyl.f')
-rw-r--r--src/fortran/lapack/ztrsyl.f365
1 files changed, 365 insertions, 0 deletions
diff --git a/src/fortran/lapack/ztrsyl.f b/src/fortran/lapack/ztrsyl.f
new file mode 100644
index 0000000..d2e0ecc
--- /dev/null
+++ b/src/fortran/lapack/ztrsyl.f
@@ -0,0 +1,365 @@
+ SUBROUTINE ZTRSYL( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C,
+ $ LDC, SCALE, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER TRANA, TRANB
+ INTEGER INFO, ISGN, LDA, LDB, LDC, M, N
+ DOUBLE PRECISION SCALE
+* ..
+* .. Array Arguments ..
+ COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * )
+* ..
+*
+* Purpose
+* =======
+*
+* ZTRSYL solves the complex Sylvester matrix equation:
+*
+* op(A)*X + X*op(B) = scale*C or
+* op(A)*X - X*op(B) = scale*C,
+*
+* where op(A) = A or A**H, and A and B are both upper triangular. A is
+* M-by-M and B is N-by-N; the right hand side C and the solution X are
+* M-by-N; and scale is an output scale factor, set <= 1 to avoid
+* overflow in X.
+*
+* Arguments
+* =========
+*
+* TRANA (input) CHARACTER*1
+* Specifies the option op(A):
+* = 'N': op(A) = A (No transpose)
+* = 'C': op(A) = A**H (Conjugate transpose)
+*
+* TRANB (input) CHARACTER*1
+* Specifies the option op(B):
+* = 'N': op(B) = B (No transpose)
+* = 'C': op(B) = B**H (Conjugate transpose)
+*
+* ISGN (input) INTEGER
+* Specifies the sign in the equation:
+* = +1: solve op(A)*X + X*op(B) = scale*C
+* = -1: solve op(A)*X - X*op(B) = scale*C
+*
+* M (input) INTEGER
+* The order of the matrix A, and the number of rows in the
+* matrices X and C. M >= 0.
+*
+* N (input) INTEGER
+* The order of the matrix B, and the number of columns in the
+* matrices X and C. N >= 0.
+*
+* A (input) COMPLEX*16 array, dimension (LDA,M)
+* The upper triangular matrix A.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,M).
+*
+* B (input) COMPLEX*16 array, dimension (LDB,N)
+* The upper triangular matrix B.
+*
+* LDB (input) INTEGER
+* The leading dimension of the array B. LDB >= max(1,N).
+*
+* C (input/output) COMPLEX*16 array, dimension (LDC,N)
+* On entry, the M-by-N right hand side matrix C.
+* On exit, C is overwritten by the solution matrix X.
+*
+* LDC (input) INTEGER
+* The leading dimension of the array C. LDC >= max(1,M)
+*
+* SCALE (output) DOUBLE PRECISION
+* The scale factor, scale, set <= 1 to avoid overflow in X.
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+* = 1: A and B have common or very close eigenvalues; perturbed
+* values were used to solve the equation (but the matrices
+* A and B are unchanged).
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ONE
+ PARAMETER ( ONE = 1.0D+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL NOTRNA, NOTRNB
+ INTEGER J, K, L
+ DOUBLE PRECISION BIGNUM, DA11, DB, EPS, SCALOC, SGN, SMIN,
+ $ SMLNUM
+ COMPLEX*16 A11, SUML, SUMR, VEC, X11
+* ..
+* .. Local Arrays ..
+ DOUBLE PRECISION DUM( 1 )
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ DOUBLE PRECISION DLAMCH, ZLANGE
+ COMPLEX*16 ZDOTC, ZDOTU, ZLADIV
+ EXTERNAL LSAME, DLAMCH, ZLANGE, ZDOTC, ZDOTU, ZLADIV
+* ..
+* .. External Subroutines ..
+ EXTERNAL DLABAD, XERBLA, ZDSCAL
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Decode and Test input parameters
+*
+ NOTRNA = LSAME( TRANA, 'N' )
+ NOTRNB = LSAME( TRANB, 'N' )
+*
+ INFO = 0
+ IF( .NOT.NOTRNA .AND. .NOT.LSAME( TRANA, 'C' ) ) THEN
+ INFO = -1
+ ELSE IF( .NOT.NOTRNB .AND. .NOT.LSAME( TRANB, 'C' ) ) THEN
+ INFO = -2
+ ELSE IF( ISGN.NE.1 .AND. ISGN.NE.-1 ) THEN
+ INFO = -3
+ ELSE IF( M.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -5
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -7
+ ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
+ INFO = -9
+ ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
+ INFO = -11
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZTRSYL', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( M.EQ.0 .OR. N.EQ.0 )
+ $ RETURN
+*
+* Set constants to control overflow
+*
+ EPS = DLAMCH( 'P' )
+ SMLNUM = DLAMCH( 'S' )
+ BIGNUM = ONE / SMLNUM
+ CALL DLABAD( SMLNUM, BIGNUM )
+ SMLNUM = SMLNUM*DBLE( M*N ) / EPS
+ BIGNUM = ONE / SMLNUM
+ SMIN = MAX( SMLNUM, EPS*ZLANGE( 'M', M, M, A, LDA, DUM ),
+ $ EPS*ZLANGE( 'M', N, N, B, LDB, DUM ) )
+ SCALE = ONE
+ SGN = ISGN
+*
+ IF( NOTRNA .AND. NOTRNB ) THEN
+*
+* Solve A*X + ISGN*X*B = scale*C.
+*
+* The (K,L)th block of X is determined starting from
+* bottom-left corner column by column by
+*
+* A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L)
+*
+* Where
+* M L-1
+* R(K,L) = SUM [A(K,I)*X(I,L)] +ISGN*SUM [X(K,J)*B(J,L)].
+* I=K+1 J=1
+*
+ DO 30 L = 1, N
+ DO 20 K = M, 1, -1
+*
+ SUML = ZDOTU( M-K, A( K, MIN( K+1, M ) ), LDA,
+ $ C( MIN( K+1, M ), L ), 1 )
+ SUMR = ZDOTU( L-1, C( K, 1 ), LDC, B( 1, L ), 1 )
+ VEC = C( K, L ) - ( SUML+SGN*SUMR )
+*
+ SCALOC = ONE
+ A11 = A( K, K ) + SGN*B( L, L )
+ DA11 = ABS( DBLE( A11 ) ) + ABS( DIMAG( A11 ) )
+ IF( DA11.LE.SMIN ) THEN
+ A11 = SMIN
+ DA11 = SMIN
+ INFO = 1
+ END IF
+ DB = ABS( DBLE( VEC ) ) + ABS( DIMAG( VEC ) )
+ IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN
+ IF( DB.GT.BIGNUM*DA11 )
+ $ SCALOC = ONE / DB
+ END IF
+ X11 = ZLADIV( VEC*DCMPLX( SCALOC ), A11 )
+*
+ IF( SCALOC.NE.ONE ) THEN
+ DO 10 J = 1, N
+ CALL ZDSCAL( M, SCALOC, C( 1, J ), 1 )
+ 10 CONTINUE
+ SCALE = SCALE*SCALOC
+ END IF
+ C( K, L ) = X11
+*
+ 20 CONTINUE
+ 30 CONTINUE
+*
+ ELSE IF( .NOT.NOTRNA .AND. NOTRNB ) THEN
+*
+* Solve A' *X + ISGN*X*B = scale*C.
+*
+* The (K,L)th block of X is determined starting from
+* upper-left corner column by column by
+*
+* A'(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L)
+*
+* Where
+* K-1 L-1
+* R(K,L) = SUM [A'(I,K)*X(I,L)] + ISGN*SUM [X(K,J)*B(J,L)]
+* I=1 J=1
+*
+ DO 60 L = 1, N
+ DO 50 K = 1, M
+*
+ SUML = ZDOTC( K-1, A( 1, K ), 1, C( 1, L ), 1 )
+ SUMR = ZDOTU( L-1, C( K, 1 ), LDC, B( 1, L ), 1 )
+ VEC = C( K, L ) - ( SUML+SGN*SUMR )
+*
+ SCALOC = ONE
+ A11 = DCONJG( A( K, K ) ) + SGN*B( L, L )
+ DA11 = ABS( DBLE( A11 ) ) + ABS( DIMAG( A11 ) )
+ IF( DA11.LE.SMIN ) THEN
+ A11 = SMIN
+ DA11 = SMIN
+ INFO = 1
+ END IF
+ DB = ABS( DBLE( VEC ) ) + ABS( DIMAG( VEC ) )
+ IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN
+ IF( DB.GT.BIGNUM*DA11 )
+ $ SCALOC = ONE / DB
+ END IF
+*
+ X11 = ZLADIV( VEC*DCMPLX( SCALOC ), A11 )
+*
+ IF( SCALOC.NE.ONE ) THEN
+ DO 40 J = 1, N
+ CALL ZDSCAL( M, SCALOC, C( 1, J ), 1 )
+ 40 CONTINUE
+ SCALE = SCALE*SCALOC
+ END IF
+ C( K, L ) = X11
+*
+ 50 CONTINUE
+ 60 CONTINUE
+*
+ ELSE IF( .NOT.NOTRNA .AND. .NOT.NOTRNB ) THEN
+*
+* Solve A'*X + ISGN*X*B' = C.
+*
+* The (K,L)th block of X is determined starting from
+* upper-right corner column by column by
+*
+* A'(K,K)*X(K,L) + ISGN*X(K,L)*B'(L,L) = C(K,L) - R(K,L)
+*
+* Where
+* K-1
+* R(K,L) = SUM [A'(I,K)*X(I,L)] +
+* I=1
+* N
+* ISGN*SUM [X(K,J)*B'(L,J)].
+* J=L+1
+*
+ DO 90 L = N, 1, -1
+ DO 80 K = 1, M
+*
+ SUML = ZDOTC( K-1, A( 1, K ), 1, C( 1, L ), 1 )
+ SUMR = ZDOTC( N-L, C( K, MIN( L+1, N ) ), LDC,
+ $ B( L, MIN( L+1, N ) ), LDB )
+ VEC = C( K, L ) - ( SUML+SGN*DCONJG( SUMR ) )
+*
+ SCALOC = ONE
+ A11 = DCONJG( A( K, K )+SGN*B( L, L ) )
+ DA11 = ABS( DBLE( A11 ) ) + ABS( DIMAG( A11 ) )
+ IF( DA11.LE.SMIN ) THEN
+ A11 = SMIN
+ DA11 = SMIN
+ INFO = 1
+ END IF
+ DB = ABS( DBLE( VEC ) ) + ABS( DIMAG( VEC ) )
+ IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN
+ IF( DB.GT.BIGNUM*DA11 )
+ $ SCALOC = ONE / DB
+ END IF
+*
+ X11 = ZLADIV( VEC*DCMPLX( SCALOC ), A11 )
+*
+ IF( SCALOC.NE.ONE ) THEN
+ DO 70 J = 1, N
+ CALL ZDSCAL( M, SCALOC, C( 1, J ), 1 )
+ 70 CONTINUE
+ SCALE = SCALE*SCALOC
+ END IF
+ C( K, L ) = X11
+*
+ 80 CONTINUE
+ 90 CONTINUE
+*
+ ELSE IF( NOTRNA .AND. .NOT.NOTRNB ) THEN
+*
+* Solve A*X + ISGN*X*B' = C.
+*
+* The (K,L)th block of X is determined starting from
+* bottom-left corner column by column by
+*
+* A(K,K)*X(K,L) + ISGN*X(K,L)*B'(L,L) = C(K,L) - R(K,L)
+*
+* Where
+* M N
+* R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B'(L,J)]
+* I=K+1 J=L+1
+*
+ DO 120 L = N, 1, -1
+ DO 110 K = M, 1, -1
+*
+ SUML = ZDOTU( M-K, A( K, MIN( K+1, M ) ), LDA,
+ $ C( MIN( K+1, M ), L ), 1 )
+ SUMR = ZDOTC( N-L, C( K, MIN( L+1, N ) ), LDC,
+ $ B( L, MIN( L+1, N ) ), LDB )
+ VEC = C( K, L ) - ( SUML+SGN*DCONJG( SUMR ) )
+*
+ SCALOC = ONE
+ A11 = A( K, K ) + SGN*DCONJG( B( L, L ) )
+ DA11 = ABS( DBLE( A11 ) ) + ABS( DIMAG( A11 ) )
+ IF( DA11.LE.SMIN ) THEN
+ A11 = SMIN
+ DA11 = SMIN
+ INFO = 1
+ END IF
+ DB = ABS( DBLE( VEC ) ) + ABS( DIMAG( VEC ) )
+ IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN
+ IF( DB.GT.BIGNUM*DA11 )
+ $ SCALOC = ONE / DB
+ END IF
+*
+ X11 = ZLADIV( VEC*DCMPLX( SCALOC ), A11 )
+*
+ IF( SCALOC.NE.ONE ) THEN
+ DO 100 J = 1, N
+ CALL ZDSCAL( M, SCALOC, C( 1, J ), 1 )
+ 100 CONTINUE
+ SCALE = SCALE*SCALOC
+ END IF
+ C( K, L ) = X11
+*
+ 110 CONTINUE
+ 120 CONTINUE
+*
+ END IF
+*
+ RETURN
+*
+* End of ZTRSYL
+*
+ END