summaryrefslogtreecommitdiff
path: root/src/fortran/lapack/dtgsen.f
diff options
context:
space:
mode:
Diffstat (limited to 'src/fortran/lapack/dtgsen.f')
-rw-r--r--src/fortran/lapack/dtgsen.f723
1 files changed, 723 insertions, 0 deletions
diff --git a/src/fortran/lapack/dtgsen.f b/src/fortran/lapack/dtgsen.f
new file mode 100644
index 0000000..917a7b0
--- /dev/null
+++ b/src/fortran/lapack/dtgsen.f
@@ -0,0 +1,723 @@
+ SUBROUTINE DTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
+ $ ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, M, PL,
+ $ PR, DIF, WORK, LWORK, IWORK, LIWORK, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH.
+*
+* .. Scalar Arguments ..
+ LOGICAL WANTQ, WANTZ
+ INTEGER IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
+ $ M, N
+ DOUBLE PRECISION PL, PR
+* ..
+* .. Array Arguments ..
+ LOGICAL SELECT( * )
+ INTEGER IWORK( * )
+ DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
+ $ B( LDB, * ), BETA( * ), DIF( * ), Q( LDQ, * ),
+ $ WORK( * ), Z( LDZ, * )
+* ..
+*
+* Purpose
+* =======
+*
+* DTGSEN reorders the generalized real Schur decomposition of a real
+* matrix pair (A, B) (in terms of an orthonormal equivalence trans-
+* formation Q' * (A, B) * Z), so that a selected cluster of eigenvalues
+* appears in the leading diagonal blocks of the upper quasi-triangular
+* matrix A and the upper triangular B. The leading columns of Q and
+* Z form orthonormal bases of the corresponding left and right eigen-
+* spaces (deflating subspaces). (A, B) must be in generalized real
+* Schur canonical form (as returned by DGGES), i.e. A is block upper
+* triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper
+* triangular.
+*
+* DTGSEN also computes the generalized eigenvalues
+*
+* w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j)
+*
+* of the reordered matrix pair (A, B).
+*
+* Optionally, DTGSEN computes the estimates of reciprocal condition
+* numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
+* (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
+* between the matrix pairs (A11, B11) and (A22,B22) that correspond to
+* the selected cluster and the eigenvalues outside the cluster, resp.,
+* and norms of "projections" onto left and right eigenspaces w.r.t.
+* the selected cluster in the (1,1)-block.
+*
+* Arguments
+* =========
+*
+* IJOB (input) INTEGER
+* Specifies whether condition numbers are required for the
+* cluster of eigenvalues (PL and PR) or the deflating subspaces
+* (Difu and Difl):
+* =0: Only reorder w.r.t. SELECT. No extras.
+* =1: Reciprocal of norms of "projections" onto left and right
+* eigenspaces w.r.t. the selected cluster (PL and PR).
+* =2: Upper bounds on Difu and Difl. F-norm-based estimate
+* (DIF(1:2)).
+* =3: Estimate of Difu and Difl. 1-norm-based estimate
+* (DIF(1:2)).
+* About 5 times as expensive as IJOB = 2.
+* =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
+* version to get it all.
+* =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)
+*
+* WANTQ (input) LOGICAL
+* .TRUE. : update the left transformation matrix Q;
+* .FALSE.: do not update Q.
+*
+* WANTZ (input) LOGICAL
+* .TRUE. : update the right transformation matrix Z;
+* .FALSE.: do not update Z.
+*
+* SELECT (input) LOGICAL array, dimension (N)
+* SELECT specifies the eigenvalues in the selected cluster.
+* To select a real eigenvalue w(j), SELECT(j) must be set to
+* .TRUE.. To select a complex conjugate pair of eigenvalues
+* w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
+* either SELECT(j) or SELECT(j+1) or both must be set to
+* .TRUE.; a complex conjugate pair of eigenvalues must be
+* either both included in the cluster or both excluded.
+*
+* N (input) INTEGER
+* The order of the matrices A and B. N >= 0.
+*
+* A (input/output) DOUBLE PRECISION array, dimension(LDA,N)
+* On entry, the upper quasi-triangular matrix A, with (A, B) in
+* generalized real Schur canonical form.
+* On exit, A is overwritten by the reordered matrix A.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,N).
+*
+* B (input/output) DOUBLE PRECISION array, dimension(LDB,N)
+* On entry, the upper triangular matrix B, with (A, B) in
+* generalized real Schur canonical form.
+* On exit, B is overwritten by the reordered matrix B.
+*
+* LDB (input) INTEGER
+* The leading dimension of the array B. LDB >= max(1,N).
+*
+* ALPHAR (output) DOUBLE PRECISION array, dimension (N)
+* ALPHAI (output) DOUBLE PRECISION array, dimension (N)
+* BETA (output) DOUBLE PRECISION array, dimension (N)
+* On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
+* be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i
+* and BETA(j),j=1,...,N are the diagonals of the complex Schur
+* form (S,T) that would result if the 2-by-2 diagonal blocks of
+* the real generalized Schur form of (A,B) were further reduced
+* to triangular form using complex unitary transformations.
+* If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
+* positive, then the j-th and (j+1)-st eigenvalues are a
+* complex conjugate pair, with ALPHAI(j+1) negative.
+*
+* Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
+* On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
+* On exit, Q has been postmultiplied by the left orthogonal
+* transformation matrix which reorder (A, B); The leading M
+* columns of Q form orthonormal bases for the specified pair of
+* left eigenspaces (deflating subspaces).
+* If WANTQ = .FALSE., Q is not referenced.
+*
+* LDQ (input) INTEGER
+* The leading dimension of the array Q. LDQ >= 1;
+* and if WANTQ = .TRUE., LDQ >= N.
+*
+* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
+* On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
+* On exit, Z has been postmultiplied by the left orthogonal
+* transformation matrix which reorder (A, B); The leading M
+* columns of Z form orthonormal bases for the specified pair of
+* left eigenspaces (deflating subspaces).
+* If WANTZ = .FALSE., Z is not referenced.
+*
+* LDZ (input) INTEGER
+* The leading dimension of the array Z. LDZ >= 1;
+* If WANTZ = .TRUE., LDZ >= N.
+*
+* M (output) INTEGER
+* The dimension of the specified pair of left and right eigen-
+* spaces (deflating subspaces). 0 <= M <= N.
+*
+* PL (output) DOUBLE PRECISION
+* PR (output) DOUBLE PRECISION
+* If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
+* reciprocal of the norm of "projections" onto left and right
+* eigenspaces with respect to the selected cluster.
+* 0 < PL, PR <= 1.
+* If M = 0 or M = N, PL = PR = 1.
+* If IJOB = 0, 2 or 3, PL and PR are not referenced.
+*
+* DIF (output) DOUBLE PRECISION array, dimension (2).
+* If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
+* If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
+* Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
+* estimates of Difu and Difl.
+* If M = 0 or N, DIF(1:2) = F-norm([A, B]).
+* If IJOB = 0 or 1, DIF is not referenced.
+*
+* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
+* IF IJOB = 0, WORK is not referenced. Otherwise,
+* on exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*
+* LWORK (input) INTEGER
+* The dimension of the array WORK. LWORK >= 4*N+16.
+* If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-M)).
+* If IJOB = 3 or 5, LWORK >= MAX(4*N+16, 4*M*(N-M)).
+*
+* If LWORK = -1, then a workspace query is assumed; the routine
+* only calculates the optimal size of the WORK array, returns
+* this value as the first entry of the WORK array, and no error
+* message related to LWORK is issued by XERBLA.
+*
+* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
+* IF IJOB = 0, IWORK is not referenced. Otherwise,
+* on exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
+*
+* LIWORK (input) INTEGER
+* The dimension of the array IWORK. LIWORK >= 1.
+* If IJOB = 1, 2 or 4, LIWORK >= N+6.
+* If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6).
+*
+* If LIWORK = -1, then a workspace query is assumed; the
+* routine only calculates the optimal size of the IWORK array,
+* returns this value as the first entry of the IWORK array, and
+* no error message related to LIWORK is issued by XERBLA.
+*
+* INFO (output) INTEGER
+* =0: Successful exit.
+* <0: If INFO = -i, the i-th argument had an illegal value.
+* =1: Reordering of (A, B) failed because the transformed
+* matrix pair (A, B) would be too far from generalized
+* Schur form; the problem is very ill-conditioned.
+* (A, B) may have been partially reordered.
+* If requested, 0 is returned in DIF(*), PL and PR.
+*
+* Further Details
+* ===============
+*
+* DTGSEN first collects the selected eigenvalues by computing
+* orthogonal U and W that move them to the top left corner of (A, B).
+* In other words, the selected eigenvalues are the eigenvalues of
+* (A11, B11) in:
+*
+* U'*(A, B)*W = (A11 A12) (B11 B12) n1
+* ( 0 A22),( 0 B22) n2
+* n1 n2 n1 n2
+*
+* where N = n1+n2 and U' means the transpose of U. The first n1 columns
+* of U and W span the specified pair of left and right eigenspaces
+* (deflating subspaces) of (A, B).
+*
+* If (A, B) has been obtained from the generalized real Schur
+* decomposition of a matrix pair (C, D) = Q*(A, B)*Z', then the
+* reordered generalized real Schur form of (C, D) is given by
+*
+* (C, D) = (Q*U)*(U'*(A, B)*W)*(Z*W)',
+*
+* and the first n1 columns of Q*U and Z*W span the corresponding
+* deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
+*
+* Note that if the selected eigenvalue is sufficiently ill-conditioned,
+* then its value may differ significantly from its value before
+* reordering.
+*
+* The reciprocal condition numbers of the left and right eigenspaces
+* spanned by the first n1 columns of U and W (or Q*U and Z*W) may
+* be returned in DIF(1:2), corresponding to Difu and Difl, resp.
+*
+* The Difu and Difl are defined as:
+*
+* Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
+* and
+* Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],
+*
+* where sigma-min(Zu) is the smallest singular value of the
+* (2*n1*n2)-by-(2*n1*n2) matrix
+*
+* Zu = [ kron(In2, A11) -kron(A22', In1) ]
+* [ kron(In2, B11) -kron(B22', In1) ].
+*
+* Here, Inx is the identity matrix of size nx and A22' is the
+* transpose of A22. kron(X, Y) is the Kronecker product between
+* the matrices X and Y.
+*
+* When DIF(2) is small, small changes in (A, B) can cause large changes
+* in the deflating subspace. An approximate (asymptotic) bound on the
+* maximum angular error in the computed deflating subspaces is
+*
+* EPS * norm((A, B)) / DIF(2),
+*
+* where EPS is the machine precision.
+*
+* The reciprocal norm of the projectors on the left and right
+* eigenspaces associated with (A11, B11) may be returned in PL and PR.
+* They are computed as follows. First we compute L and R so that
+* P*(A, B)*Q is block diagonal, where
+*
+* P = ( I -L ) n1 Q = ( I R ) n1
+* ( 0 I ) n2 and ( 0 I ) n2
+* n1 n2 n1 n2
+*
+* and (L, R) is the solution to the generalized Sylvester equation
+*
+* A11*R - L*A22 = -A12
+* B11*R - L*B22 = -B12
+*
+* Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
+* An approximate (asymptotic) bound on the average absolute error of
+* the selected eigenvalues is
+*
+* EPS * norm((A, B)) / PL.
+*
+* There are also global error bounds which valid for perturbations up
+* to a certain restriction: A lower bound (x) on the smallest
+* F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
+* coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
+* (i.e. (A + E, B + F), is
+*
+* x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
+*
+* An approximate bound on x can be computed from DIF(1:2), PL and PR.
+*
+* If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
+* (L', R') and unperturbed (L, R) left and right deflating subspaces
+* associated with the selected cluster in the (1,1)-blocks can be
+* bounded as
+*
+* max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
+* max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))
+*
+* See LAPACK User's Guide section 4.11 or the following references
+* for more information.
+*
+* Note that if the default method for computing the Frobenius-norm-
+* based estimate DIF is not wanted (see DLATDF), then the parameter
+* IDIFJB (see below) should be changed from 3 to 4 (routine DLATDF
+* (IJOB = 2 will be used)). See DTGSYL for more details.
+*
+* Based on contributions by
+* Bo Kagstrom and Peter Poromaa, Department of Computing Science,
+* Umea University, S-901 87 Umea, Sweden.
+*
+* References
+* ==========
+*
+* [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
+* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
+* M.S. Moonen et al (eds), Linear Algebra for Large Scale and
+* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
+*
+* [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
+* Eigenvalues of a Regular Matrix Pair (A, B) and Condition
+* Estimation: Theory, Algorithms and Software,
+* Report UMINF - 94.04, Department of Computing Science, Umea
+* University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
+* Note 87. To appear in Numerical Algorithms, 1996.
+*
+* [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
+* for Solving the Generalized Sylvester Equation and Estimating the
+* Separation between Regular Matrix Pairs, Report UMINF - 93.23,
+* Department of Computing Science, Umea University, S-901 87 Umea,
+* Sweden, December 1993, Revised April 1994, Also as LAPACK Working
+* Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
+* 1996.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ INTEGER IDIFJB
+ PARAMETER ( IDIFJB = 3 )
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL LQUERY, PAIR, SWAP, WANTD, WANTD1, WANTD2,
+ $ WANTP
+ INTEGER I, IERR, IJB, K, KASE, KK, KS, LIWMIN, LWMIN,
+ $ MN2, N1, N2
+ DOUBLE PRECISION DSCALE, DSUM, EPS, RDSCAL, SMLNUM
+* ..
+* .. Local Arrays ..
+ INTEGER ISAVE( 3 )
+* ..
+* .. External Subroutines ..
+ EXTERNAL DLACN2, DLACPY, DLAG2, DLASSQ, DTGEXC, DTGSYL,
+ $ XERBLA
+* ..
+* .. External Functions ..
+ DOUBLE PRECISION DLAMCH
+ EXTERNAL DLAMCH
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX, SIGN, SQRT
+* ..
+* .. Executable Statements ..
+*
+* Decode and test the input parameters
+*
+ INFO = 0
+ LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
+*
+ IF( IJOB.LT.0 .OR. IJOB.GT.5 ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -5
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -7
+ ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
+ INFO = -9
+ ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
+ INFO = -14
+ ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
+ INFO = -16
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DTGSEN', -INFO )
+ RETURN
+ END IF
+*
+* Get machine constants
+*
+ EPS = DLAMCH( 'P' )
+ SMLNUM = DLAMCH( 'S' ) / EPS
+ IERR = 0
+*
+ WANTP = IJOB.EQ.1 .OR. IJOB.GE.4
+ WANTD1 = IJOB.EQ.2 .OR. IJOB.EQ.4
+ WANTD2 = IJOB.EQ.3 .OR. IJOB.EQ.5
+ WANTD = WANTD1 .OR. WANTD2
+*
+* Set M to the dimension of the specified pair of deflating
+* subspaces.
+*
+ M = 0
+ PAIR = .FALSE.
+ DO 10 K = 1, N
+ IF( PAIR ) THEN
+ PAIR = .FALSE.
+ ELSE
+ IF( K.LT.N ) THEN
+ IF( A( K+1, K ).EQ.ZERO ) THEN
+ IF( SELECT( K ) )
+ $ M = M + 1
+ ELSE
+ PAIR = .TRUE.
+ IF( SELECT( K ) .OR. SELECT( K+1 ) )
+ $ M = M + 2
+ END IF
+ ELSE
+ IF( SELECT( N ) )
+ $ M = M + 1
+ END IF
+ END IF
+ 10 CONTINUE
+*
+ IF( IJOB.EQ.1 .OR. IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN
+ LWMIN = MAX( 1, 4*N+16, 2*M*( N-M ) )
+ LIWMIN = MAX( 1, N+6 )
+ ELSE IF( IJOB.EQ.3 .OR. IJOB.EQ.5 ) THEN
+ LWMIN = MAX( 1, 4*N+16, 4*M*( N-M ) )
+ LIWMIN = MAX( 1, 2*M*( N-M ), N+6 )
+ ELSE
+ LWMIN = MAX( 1, 4*N+16 )
+ LIWMIN = 1
+ END IF
+*
+ WORK( 1 ) = LWMIN
+ IWORK( 1 ) = LIWMIN
+*
+ IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
+ INFO = -22
+ ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
+ INFO = -24
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DTGSEN', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible.
+*
+ IF( M.EQ.N .OR. M.EQ.0 ) THEN
+ IF( WANTP ) THEN
+ PL = ONE
+ PR = ONE
+ END IF
+ IF( WANTD ) THEN
+ DSCALE = ZERO
+ DSUM = ONE
+ DO 20 I = 1, N
+ CALL DLASSQ( N, A( 1, I ), 1, DSCALE, DSUM )
+ CALL DLASSQ( N, B( 1, I ), 1, DSCALE, DSUM )
+ 20 CONTINUE
+ DIF( 1 ) = DSCALE*SQRT( DSUM )
+ DIF( 2 ) = DIF( 1 )
+ END IF
+ GO TO 60
+ END IF
+*
+* Collect the selected blocks at the top-left corner of (A, B).
+*
+ KS = 0
+ PAIR = .FALSE.
+ DO 30 K = 1, N
+ IF( PAIR ) THEN
+ PAIR = .FALSE.
+ ELSE
+*
+ SWAP = SELECT( K )
+ IF( K.LT.N ) THEN
+ IF( A( K+1, K ).NE.ZERO ) THEN
+ PAIR = .TRUE.
+ SWAP = SWAP .OR. SELECT( K+1 )
+ END IF
+ END IF
+*
+ IF( SWAP ) THEN
+ KS = KS + 1
+*
+* Swap the K-th block to position KS.
+* Perform the reordering of diagonal blocks in (A, B)
+* by orthogonal transformation matrices and update
+* Q and Z accordingly (if requested):
+*
+ KK = K
+ IF( K.NE.KS )
+ $ CALL DTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ,
+ $ Z, LDZ, KK, KS, WORK, LWORK, IERR )
+*
+ IF( IERR.GT.0 ) THEN
+*
+* Swap is rejected: exit.
+*
+ INFO = 1
+ IF( WANTP ) THEN
+ PL = ZERO
+ PR = ZERO
+ END IF
+ IF( WANTD ) THEN
+ DIF( 1 ) = ZERO
+ DIF( 2 ) = ZERO
+ END IF
+ GO TO 60
+ END IF
+*
+ IF( PAIR )
+ $ KS = KS + 1
+ END IF
+ END IF
+ 30 CONTINUE
+ IF( WANTP ) THEN
+*
+* Solve generalized Sylvester equation for R and L
+* and compute PL and PR.
+*
+ N1 = M
+ N2 = N - M
+ I = N1 + 1
+ IJB = 0
+ CALL DLACPY( 'Full', N1, N2, A( 1, I ), LDA, WORK, N1 )
+ CALL DLACPY( 'Full', N1, N2, B( 1, I ), LDB, WORK( N1*N2+1 ),
+ $ N1 )
+ CALL DTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
+ $ N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ), N1,
+ $ DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ),
+ $ LWORK-2*N1*N2, IWORK, IERR )
+*
+* Estimate the reciprocal of norms of "projections" onto left
+* and right eigenspaces.
+*
+ RDSCAL = ZERO
+ DSUM = ONE
+ CALL DLASSQ( N1*N2, WORK, 1, RDSCAL, DSUM )
+ PL = RDSCAL*SQRT( DSUM )
+ IF( PL.EQ.ZERO ) THEN
+ PL = ONE
+ ELSE
+ PL = DSCALE / ( SQRT( DSCALE*DSCALE / PL+PL )*SQRT( PL ) )
+ END IF
+ RDSCAL = ZERO
+ DSUM = ONE
+ CALL DLASSQ( N1*N2, WORK( N1*N2+1 ), 1, RDSCAL, DSUM )
+ PR = RDSCAL*SQRT( DSUM )
+ IF( PR.EQ.ZERO ) THEN
+ PR = ONE
+ ELSE
+ PR = DSCALE / ( SQRT( DSCALE*DSCALE / PR+PR )*SQRT( PR ) )
+ END IF
+ END IF
+*
+ IF( WANTD ) THEN
+*
+* Compute estimates of Difu and Difl.
+*
+ IF( WANTD1 ) THEN
+ N1 = M
+ N2 = N - M
+ I = N1 + 1
+ IJB = IDIFJB
+*
+* Frobenius norm-based Difu-estimate.
+*
+ CALL DTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
+ $ N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ),
+ $ N1, DSCALE, DIF( 1 ), WORK( 2*N1*N2+1 ),
+ $ LWORK-2*N1*N2, IWORK, IERR )
+*
+* Frobenius norm-based Difl-estimate.
+*
+ CALL DTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA, WORK,
+ $ N2, B( I, I ), LDB, B, LDB, WORK( N1*N2+1 ),
+ $ N2, DSCALE, DIF( 2 ), WORK( 2*N1*N2+1 ),
+ $ LWORK-2*N1*N2, IWORK, IERR )
+ ELSE
+*
+*
+* Compute 1-norm-based estimates of Difu and Difl using
+* reversed communication with DLACN2. In each step a
+* generalized Sylvester equation or a transposed variant
+* is solved.
+*
+ KASE = 0
+ N1 = M
+ N2 = N - M
+ I = N1 + 1
+ IJB = 0
+ MN2 = 2*N1*N2
+*
+* 1-norm-based estimate of Difu.
+*
+ 40 CONTINUE
+ CALL DLACN2( MN2, WORK( MN2+1 ), WORK, IWORK, DIF( 1 ),
+ $ KASE, ISAVE )
+ IF( KASE.NE.0 ) THEN
+ IF( KASE.EQ.1 ) THEN
+*
+* Solve generalized Sylvester equation.
+*
+ CALL DTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA,
+ $ WORK, N1, B, LDB, B( I, I ), LDB,
+ $ WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
+ $ WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
+ $ IERR )
+ ELSE
+*
+* Solve the transposed variant.
+*
+ CALL DTGSYL( 'T', IJB, N1, N2, A, LDA, A( I, I ), LDA,
+ $ WORK, N1, B, LDB, B( I, I ), LDB,
+ $ WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
+ $ WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
+ $ IERR )
+ END IF
+ GO TO 40
+ END IF
+ DIF( 1 ) = DSCALE / DIF( 1 )
+*
+* 1-norm-based estimate of Difl.
+*
+ 50 CONTINUE
+ CALL DLACN2( MN2, WORK( MN2+1 ), WORK, IWORK, DIF( 2 ),
+ $ KASE, ISAVE )
+ IF( KASE.NE.0 ) THEN
+ IF( KASE.EQ.1 ) THEN
+*
+* Solve generalized Sylvester equation.
+*
+ CALL DTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA,
+ $ WORK, N2, B( I, I ), LDB, B, LDB,
+ $ WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
+ $ WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
+ $ IERR )
+ ELSE
+*
+* Solve the transposed variant.
+*
+ CALL DTGSYL( 'T', IJB, N2, N1, A( I, I ), LDA, A, LDA,
+ $ WORK, N2, B( I, I ), LDB, B, LDB,
+ $ WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
+ $ WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
+ $ IERR )
+ END IF
+ GO TO 50
+ END IF
+ DIF( 2 ) = DSCALE / DIF( 2 )
+*
+ END IF
+ END IF
+*
+ 60 CONTINUE
+*
+* Compute generalized eigenvalues of reordered pair (A, B) and
+* normalize the generalized Schur form.
+*
+ PAIR = .FALSE.
+ DO 80 K = 1, N
+ IF( PAIR ) THEN
+ PAIR = .FALSE.
+ ELSE
+*
+ IF( K.LT.N ) THEN
+ IF( A( K+1, K ).NE.ZERO ) THEN
+ PAIR = .TRUE.
+ END IF
+ END IF
+*
+ IF( PAIR ) THEN
+*
+* Compute the eigenvalue(s) at position K.
+*
+ WORK( 1 ) = A( K, K )
+ WORK( 2 ) = A( K+1, K )
+ WORK( 3 ) = A( K, K+1 )
+ WORK( 4 ) = A( K+1, K+1 )
+ WORK( 5 ) = B( K, K )
+ WORK( 6 ) = B( K+1, K )
+ WORK( 7 ) = B( K, K+1 )
+ WORK( 8 ) = B( K+1, K+1 )
+ CALL DLAG2( WORK, 2, WORK( 5 ), 2, SMLNUM*EPS, BETA( K ),
+ $ BETA( K+1 ), ALPHAR( K ), ALPHAR( K+1 ),
+ $ ALPHAI( K ) )
+ ALPHAI( K+1 ) = -ALPHAI( K )
+*
+ ELSE
+*
+ IF( SIGN( ONE, B( K, K ) ).LT.ZERO ) THEN
+*
+* If B(K,K) is negative, make it positive
+*
+ DO 70 I = 1, N
+ A( K, I ) = -A( K, I )
+ B( K, I ) = -B( K, I )
+ Q( I, K ) = -Q( I, K )
+ 70 CONTINUE
+ END IF
+*
+ ALPHAR( K ) = A( K, K )
+ ALPHAI( K ) = ZERO
+ BETA( K ) = B( K, K )
+*
+ END IF
+ END IF
+ 80 CONTINUE
+*
+ WORK( 1 ) = LWMIN
+ IWORK( 1 ) = LIWMIN
+*
+ RETURN
+*
+* End of DTGSEN
+*
+ END