summaryrefslogtreecommitdiff
path: root/src/fortran/lapack/dorgbr.f
diff options
context:
space:
mode:
Diffstat (limited to 'src/fortran/lapack/dorgbr.f')
-rw-r--r--src/fortran/lapack/dorgbr.f244
1 files changed, 244 insertions, 0 deletions
diff --git a/src/fortran/lapack/dorgbr.f b/src/fortran/lapack/dorgbr.f
new file mode 100644
index 0000000..dc88299
--- /dev/null
+++ b/src/fortran/lapack/dorgbr.f
@@ -0,0 +1,244 @@
+ SUBROUTINE DORGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER VECT
+ INTEGER INFO, K, LDA, LWORK, M, N
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+* DORGBR generates one of the real orthogonal matrices Q or P**T
+* determined by DGEBRD when reducing a real matrix A to bidiagonal
+* form: A = Q * B * P**T. Q and P**T are defined as products of
+* elementary reflectors H(i) or G(i) respectively.
+*
+* If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q
+* is of order M:
+* if m >= k, Q = H(1) H(2) . . . H(k) and DORGBR returns the first n
+* columns of Q, where m >= n >= k;
+* if m < k, Q = H(1) H(2) . . . H(m-1) and DORGBR returns Q as an
+* M-by-M matrix.
+*
+* If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T
+* is of order N:
+* if k < n, P**T = G(k) . . . G(2) G(1) and DORGBR returns the first m
+* rows of P**T, where n >= m >= k;
+* if k >= n, P**T = G(n-1) . . . G(2) G(1) and DORGBR returns P**T as
+* an N-by-N matrix.
+*
+* Arguments
+* =========
+*
+* VECT (input) CHARACTER*1
+* Specifies whether the matrix Q or the matrix P**T is
+* required, as defined in the transformation applied by DGEBRD:
+* = 'Q': generate Q;
+* = 'P': generate P**T.
+*
+* M (input) INTEGER
+* The number of rows of the matrix Q or P**T to be returned.
+* M >= 0.
+*
+* N (input) INTEGER
+* The number of columns of the matrix Q or P**T to be returned.
+* N >= 0.
+* If VECT = 'Q', M >= N >= min(M,K);
+* if VECT = 'P', N >= M >= min(N,K).
+*
+* K (input) INTEGER
+* If VECT = 'Q', the number of columns in the original M-by-K
+* matrix reduced by DGEBRD.
+* If VECT = 'P', the number of rows in the original K-by-N
+* matrix reduced by DGEBRD.
+* K >= 0.
+*
+* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+* On entry, the vectors which define the elementary reflectors,
+* as returned by DGEBRD.
+* On exit, the M-by-N matrix Q or P**T.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,M).
+*
+* TAU (input) DOUBLE PRECISION array, dimension
+* (min(M,K)) if VECT = 'Q'
+* (min(N,K)) if VECT = 'P'
+* TAU(i) must contain the scalar factor of the elementary
+* reflector H(i) or G(i), which determines Q or P**T, as
+* returned by DGEBRD in its array argument TAUQ or TAUP.
+*
+* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
+* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*
+* LWORK (input) INTEGER
+* The dimension of the array WORK. LWORK >= max(1,min(M,N)).
+* For optimum performance LWORK >= min(M,N)*NB, where NB
+* is the optimal blocksize.
+*
+* If LWORK = -1, then a workspace query is assumed; the routine
+* only calculates the optimal size of the WORK array, returns
+* this value as the first entry of the WORK array, and no error
+* message related to LWORK is issued by XERBLA.
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL LQUERY, WANTQ
+ INTEGER I, IINFO, J, LWKOPT, MN, NB
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ILAENV
+ EXTERNAL LSAME, ILAENV
+* ..
+* .. External Subroutines ..
+ EXTERNAL DORGLQ, DORGQR, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments
+*
+ INFO = 0
+ WANTQ = LSAME( VECT, 'Q' )
+ MN = MIN( M, N )
+ LQUERY = ( LWORK.EQ.-1 )
+ IF( .NOT.WANTQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
+ INFO = -1
+ ELSE IF( M.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 .OR. ( WANTQ .AND. ( N.GT.M .OR. N.LT.MIN( M,
+ $ K ) ) ) .OR. ( .NOT.WANTQ .AND. ( M.GT.N .OR. M.LT.
+ $ MIN( N, K ) ) ) ) THEN
+ INFO = -3
+ ELSE IF( K.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -6
+ ELSE IF( LWORK.LT.MAX( 1, MN ) .AND. .NOT.LQUERY ) THEN
+ INFO = -9
+ END IF
+*
+ IF( INFO.EQ.0 ) THEN
+ IF( WANTQ ) THEN
+ NB = ILAENV( 1, 'DORGQR', ' ', M, N, K, -1 )
+ ELSE
+ NB = ILAENV( 1, 'DORGLQ', ' ', M, N, K, -1 )
+ END IF
+ LWKOPT = MAX( 1, MN )*NB
+ WORK( 1 ) = LWKOPT
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DORGBR', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( M.EQ.0 .OR. N.EQ.0 ) THEN
+ WORK( 1 ) = 1
+ RETURN
+ END IF
+*
+ IF( WANTQ ) THEN
+*
+* Form Q, determined by a call to DGEBRD to reduce an m-by-k
+* matrix
+*
+ IF( M.GE.K ) THEN
+*
+* If m >= k, assume m >= n >= k
+*
+ CALL DORGQR( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
+*
+ ELSE
+*
+* If m < k, assume m = n
+*
+* Shift the vectors which define the elementary reflectors one
+* column to the right, and set the first row and column of Q
+* to those of the unit matrix
+*
+ DO 20 J = M, 2, -1
+ A( 1, J ) = ZERO
+ DO 10 I = J + 1, M
+ A( I, J ) = A( I, J-1 )
+ 10 CONTINUE
+ 20 CONTINUE
+ A( 1, 1 ) = ONE
+ DO 30 I = 2, M
+ A( I, 1 ) = ZERO
+ 30 CONTINUE
+ IF( M.GT.1 ) THEN
+*
+* Form Q(2:m,2:m)
+*
+ CALL DORGQR( M-1, M-1, M-1, A( 2, 2 ), LDA, TAU, WORK,
+ $ LWORK, IINFO )
+ END IF
+ END IF
+ ELSE
+*
+* Form P', determined by a call to DGEBRD to reduce a k-by-n
+* matrix
+*
+ IF( K.LT.N ) THEN
+*
+* If k < n, assume k <= m <= n
+*
+ CALL DORGLQ( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
+*
+ ELSE
+*
+* If k >= n, assume m = n
+*
+* Shift the vectors which define the elementary reflectors one
+* row downward, and set the first row and column of P' to
+* those of the unit matrix
+*
+ A( 1, 1 ) = ONE
+ DO 40 I = 2, N
+ A( I, 1 ) = ZERO
+ 40 CONTINUE
+ DO 60 J = 2, N
+ DO 50 I = J - 1, 2, -1
+ A( I, J ) = A( I-1, J )
+ 50 CONTINUE
+ A( 1, J ) = ZERO
+ 60 CONTINUE
+ IF( N.GT.1 ) THEN
+*
+* Form P'(2:n,2:n)
+*
+ CALL DORGLQ( N-1, N-1, N-1, A( 2, 2 ), LDA, TAU, WORK,
+ $ LWORK, IINFO )
+ END IF
+ END IF
+ END IF
+ WORK( 1 ) = LWKOPT
+ RETURN
+*
+* End of DORGBR
+*
+ END