diff options
Diffstat (limited to 'includes/blas.h')
-rw-r--r-- | includes/blas.h | 160 |
1 files changed, 160 insertions, 0 deletions
diff --git a/includes/blas.h b/includes/blas.h new file mode 100644 index 0000000..86ab62f --- /dev/null +++ b/includes/blas.h @@ -0,0 +1,160 @@ +/* + * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab + * Copyright (C) 2008-2008 - INRIA - Bruno JOFRET + * + * This file must be used under the terms of the CeCILL. + * This source file is licensed as described in the file COPYING, which + * you should have received as part of this distribution. The terms + * are also available at + * http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt + * + */ + +#ifndef __BLAS_H__ +#define __BLAS_H__ + + +#ifndef _MACRO_C2F_ +#define _MACRO_C2F_ +#define C2F(name) name##_ +#endif +/* + SUBROUTINE DGEMM ( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, + $ BETA, C, LDC ) +* .. Scalar Arguments .. + CHARACTER*1 TRANSA, TRANSB + INTEGER M, N, K, LDA, LDB, LDC + DOUBLE PRECISION ALPHA, BETA +* .. Array Arguments .. + DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ) +* .. +C WARNING : this routine has been modified for Scilab (see comments +C Cscilab) because algorithm is not ok if A matrix contains NaN +C (NaN*0 should be NaN, not 0) +* Purpose +* ======= +* +* DGEMM performs one of the matrix-matrix operations +* +* C := alpha*op( A )*op( B ) + beta*C, +* +* where op( X ) is one of +* +* op( X ) = X or op( X ) = X', +* +* alpha and beta are scalars, and A, B and C are matrices, with op( A ) +* an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. +* +* Parameters +* ========== +* +* TRANSA - CHARACTER*1. +* On entry, TRANSA specifies the form of op( A ) to be used in +* the matrix multiplication as follows: +* +* TRANSA = 'N' or 'n', op( A ) = A. +* +* TRANSA = 'T' or 't', op( A ) = A'. +* +* TRANSA = 'C' or 'c', op( A ) = A'. +* +* Unchanged on exit. +* +* TRANSB - CHARACTER*1. +* On entry, TRANSB specifies the form of op( B ) to be used in +* the matrix multiplication as follows: +* +* TRANSB = 'N' or 'n', op( B ) = B. +* +* TRANSB = 'T' or 't', op( B ) = B'. +* +* TRANSB = 'C' or 'c', op( B ) = B'. +* +* Unchanged on exit. +* +* M - INTEGER. +* On entry, M specifies the number of rows of the matrix +* op( A ) and of the matrix C. M must be at least zero. +* Unchanged on exit. +* +* N - INTEGER. +* On entry, N specifies the number of columns of the matrix +* op( B ) and the number of columns of the matrix C. N must be +* at least zero. +* Unchanged on exit. +* +* K - INTEGER. +* On entry, K specifies the number of columns of the matrix +* op( A ) and the number of rows of the matrix op( B ). K must +* be at least zero. +* Unchanged on exit. +* +* ALPHA - DOUBLE PRECISION. +* On entry, ALPHA specifies the scalar alpha. +* Unchanged on exit. +* +* A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is +* k when TRANSA = 'N' or 'n', and is m otherwise. +* Before entry with TRANSA = 'N' or 'n', the leading m by k +* part of the array A must contain the matrix A, otherwise +* the leading k by m part of the array A must contain the +* matrix A. +* Unchanged on exit. +* +* LDA - INTEGER. +* On entry, LDA specifies the first dimension of A as declared +* in the calling (sub) program. When TRANSA = 'N' or 'n' then +* LDA must be at least max( 1, m ), otherwise LDA must be at +* least max( 1, k ). +* Unchanged on exit. +* +* B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is +* n when TRANSB = 'N' or 'n', and is k otherwise. +* Before entry with TRANSB = 'N' or 'n', the leading k by n +* part of the array B must contain the matrix B, otherwise +* the leading n by k part of the array B must contain the +* matrix B. +* Unchanged on exit. +* +* LDB - INTEGER. +* On entry, LDB specifies the first dimension of B as declared +* in the calling (sub) program. When TRANSB = 'N' or 'n' then +* LDB must be at least max( 1, k ), otherwise LDB must be at +* least max( 1, n ). +* Unchanged on exit. +* +* BETA - DOUBLE PRECISION. +* On entry, BETA specifies the scalar beta. When BETA is +* supplied as zero then C need not be set on input. +* Unchanged on exit. +* +* C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). +* Before entry, the leading m by n part of the array C must +* contain the matrix C, except when beta is zero, in which +* case C need not be set on entry. +* On exit, the array C is overwritten by the m by n matrix +* ( alpha*op( A )*op( B ) + beta*C ). +* +* LDC - INTEGER. +* On entry, LDC specifies the first dimension of C as declared +* in the calling (sub) program. LDC must be at least +* max( 1, m ). +* Unchanged on exit. +* +* +* Level 3 Blas routine. +*/ +/* +void dgemm_(char *TRANSA, char* TRANSB, int *M, int *N, int *K, + double *ALPHA, double *A, int *LDA, + double *B, int *LDB, double *BETA, + double *C, int *LDC);*/ + +extern int C2F(dgemm)(); +extern int C2F(idamax)() ;/* could be transcribe easaly in c */ +extern int C2F(daxpy) () ;/* could be transcribe easaly in c */ +extern int C2F(dscal) () ;/* could be transcribe easaly in c */ +extern int C2F(dasum) () ;/* could be transcribe easaly in c */ + + +#endif /* !__BLAS_H__ */ |