summaryrefslogtreecommitdiff
path: root/thirdparty/raspberrypi/includes/opencv2/gpu/gpu.hpp
diff options
context:
space:
mode:
authorsiddhu89902017-04-24 14:08:37 +0530
committersiddhu89902017-04-24 14:08:37 +0530
commitc7e9597db39140c1d982f796a8e1f03bb54e7905 (patch)
treef5f44081aeba7a00bb69b1ec71f93c31eac12863 /thirdparty/raspberrypi/includes/opencv2/gpu/gpu.hpp
parent1fd0dce8d72c4d5869ce5ff4025ac09af603bc0f (diff)
downloadScilab2C_fossee_old-c7e9597db39140c1d982f796a8e1f03bb54e7905.tar.gz
Scilab2C_fossee_old-c7e9597db39140c1d982f796a8e1f03bb54e7905.tar.bz2
Scilab2C_fossee_old-c7e9597db39140c1d982f796a8e1f03bb54e7905.zip
Fixed float.h issue. OpenCV with built libraries working for linux x64
Diffstat (limited to 'thirdparty/raspberrypi/includes/opencv2/gpu/gpu.hpp')
-rw-r--r--thirdparty/raspberrypi/includes/opencv2/gpu/gpu.hpp2530
1 files changed, 0 insertions, 2530 deletions
diff --git a/thirdparty/raspberrypi/includes/opencv2/gpu/gpu.hpp b/thirdparty/raspberrypi/includes/opencv2/gpu/gpu.hpp
deleted file mode 100644
index de16982..0000000
--- a/thirdparty/raspberrypi/includes/opencv2/gpu/gpu.hpp
+++ /dev/null
@@ -1,2530 +0,0 @@
-/*M///////////////////////////////////////////////////////////////////////////////////////
-//
-// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
-//
-// By downloading, copying, installing or using the software you agree to this license.
-// If you do not agree to this license, do not download, install,
-// copy or use the software.
-//
-//
-// License Agreement
-// For Open Source Computer Vision Library
-//
-// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
-// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
-// Third party copyrights are property of their respective owners.
-//
-// Redistribution and use in source and binary forms, with or without modification,
-// are permitted provided that the following conditions are met:
-//
-// * Redistribution's of source code must retain the above copyright notice,
-// this list of conditions and the following disclaimer.
-//
-// * Redistribution's in binary form must reproduce the above copyright notice,
-// this list of conditions and the following disclaimer in the documentation
-// and/or other materials provided with the distribution.
-//
-// * The name of the copyright holders may not be used to endorse or promote products
-// derived from this software without specific prior written permission.
-//
-// This software is provided by the copyright holders and contributors "as is" and
-// any express or implied warranties, including, but not limited to, the implied
-// warranties of merchantability and fitness for a particular purpose are disclaimed.
-// In no event shall the Intel Corporation or contributors be liable for any direct,
-// indirect, incidental, special, exemplary, or consequential damages
-// (including, but not limited to, procurement of substitute goods or services;
-// loss of use, data, or profits; or business interruption) however caused
-// and on any theory of liability, whether in contract, strict liability,
-// or tort (including negligence or otherwise) arising in any way out of
-// the use of this software, even if advised of the possibility of such damage.
-//
-//M*/
-
-#ifndef __OPENCV_GPU_HPP__
-#define __OPENCV_GPU_HPP__
-
-#ifndef SKIP_INCLUDES
-#include <vector>
-#include <memory>
-#include <iosfwd>
-#endif
-
-#include "opencv2/core/gpumat.hpp"
-#include "opencv2/imgproc/imgproc.hpp"
-#include "opencv2/objdetect/objdetect.hpp"
-#include "opencv2/features2d/features2d.hpp"
-
-namespace cv { namespace gpu {
-
-//////////////////////////////// CudaMem ////////////////////////////////
-// CudaMem is limited cv::Mat with page locked memory allocation.
-// Page locked memory is only needed for async and faster coping to GPU.
-// It is convertable to cv::Mat header without reference counting
-// so you can use it with other opencv functions.
-
-// Page-locks the matrix m memory and maps it for the device(s)
-CV_EXPORTS void registerPageLocked(Mat& m);
-// Unmaps the memory of matrix m, and makes it pageable again.
-CV_EXPORTS void unregisterPageLocked(Mat& m);
-
-class CV_EXPORTS CudaMem
-{
-public:
- enum { ALLOC_PAGE_LOCKED = 1, ALLOC_ZEROCOPY = 2, ALLOC_WRITE_COMBINED = 4 };
-
- CudaMem();
- CudaMem(const CudaMem& m);
-
- CudaMem(int rows, int cols, int type, int _alloc_type = ALLOC_PAGE_LOCKED);
- CudaMem(Size size, int type, int alloc_type = ALLOC_PAGE_LOCKED);
-
-
- //! creates from cv::Mat with coping data
- explicit CudaMem(const Mat& m, int alloc_type = ALLOC_PAGE_LOCKED);
-
- ~CudaMem();
-
- CudaMem& operator = (const CudaMem& m);
-
- //! returns deep copy of the matrix, i.e. the data is copied
- CudaMem clone() const;
-
- //! allocates new matrix data unless the matrix already has specified size and type.
- void create(int rows, int cols, int type, int alloc_type = ALLOC_PAGE_LOCKED);
- void create(Size size, int type, int alloc_type = ALLOC_PAGE_LOCKED);
-
- //! decrements reference counter and released memory if needed.
- void release();
-
- //! returns matrix header with disabled reference counting for CudaMem data.
- Mat createMatHeader() const;
- operator Mat() const;
-
- //! maps host memory into device address space and returns GpuMat header for it. Throws exception if not supported by hardware.
- GpuMat createGpuMatHeader() const;
- operator GpuMat() const;
-
- //returns if host memory can be mapperd to gpu address space;
- static bool canMapHostMemory();
-
- // Please see cv::Mat for descriptions
- bool isContinuous() const;
- size_t elemSize() const;
- size_t elemSize1() const;
- int type() const;
- int depth() const;
- int channels() const;
- size_t step1() const;
- Size size() const;
- bool empty() const;
-
-
- // Please see cv::Mat for descriptions
- int flags;
- int rows, cols;
- size_t step;
-
- uchar* data;
- int* refcount;
-
- uchar* datastart;
- uchar* dataend;
-
- int alloc_type;
-};
-
-//////////////////////////////// CudaStream ////////////////////////////////
-// Encapculates Cuda Stream. Provides interface for async coping.
-// Passed to each function that supports async kernel execution.
-// Reference counting is enabled
-
-class CV_EXPORTS Stream
-{
-public:
- Stream();
- ~Stream();
-
- Stream(const Stream&);
- Stream& operator =(const Stream&);
-
- bool queryIfComplete();
- void waitForCompletion();
-
- //! downloads asynchronously
- // Warning! cv::Mat must point to page locked memory (i.e. to CudaMem data or to its subMat)
- void enqueueDownload(const GpuMat& src, CudaMem& dst);
- void enqueueDownload(const GpuMat& src, Mat& dst);
-
- //! uploads asynchronously
- // Warning! cv::Mat must point to page locked memory (i.e. to CudaMem data or to its ROI)
- void enqueueUpload(const CudaMem& src, GpuMat& dst);
- void enqueueUpload(const Mat& src, GpuMat& dst);
-
- //! copy asynchronously
- void enqueueCopy(const GpuMat& src, GpuMat& dst);
-
- //! memory set asynchronously
- void enqueueMemSet(GpuMat& src, Scalar val);
- void enqueueMemSet(GpuMat& src, Scalar val, const GpuMat& mask);
-
- //! converts matrix type, ex from float to uchar depending on type
- void enqueueConvert(const GpuMat& src, GpuMat& dst, int dtype, double a = 1, double b = 0);
-
- //! adds a callback to be called on the host after all currently enqueued items in the stream have completed
- typedef void (*StreamCallback)(Stream& stream, int status, void* userData);
- void enqueueHostCallback(StreamCallback callback, void* userData);
-
- static Stream& Null();
-
- operator bool() const;
-
-private:
- struct Impl;
-
- explicit Stream(Impl* impl);
- void create();
- void release();
-
- Impl *impl;
-
- friend struct StreamAccessor;
-};
-
-
-//////////////////////////////// Filter Engine ////////////////////////////////
-
-/*!
-The Base Class for 1D or Row-wise Filters
-
-This is the base class for linear or non-linear filters that process 1D data.
-In particular, such filters are used for the "horizontal" filtering parts in separable filters.
-*/
-class CV_EXPORTS BaseRowFilter_GPU
-{
-public:
- BaseRowFilter_GPU(int ksize_, int anchor_) : ksize(ksize_), anchor(anchor_) {}
- virtual ~BaseRowFilter_GPU() {}
- virtual void operator()(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null()) = 0;
- int ksize, anchor;
-};
-
-/*!
-The Base Class for Column-wise Filters
-
-This is the base class for linear or non-linear filters that process columns of 2D arrays.
-Such filters are used for the "vertical" filtering parts in separable filters.
-*/
-class CV_EXPORTS BaseColumnFilter_GPU
-{
-public:
- BaseColumnFilter_GPU(int ksize_, int anchor_) : ksize(ksize_), anchor(anchor_) {}
- virtual ~BaseColumnFilter_GPU() {}
- virtual void operator()(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null()) = 0;
- int ksize, anchor;
-};
-
-/*!
-The Base Class for Non-Separable 2D Filters.
-
-This is the base class for linear or non-linear 2D filters.
-*/
-class CV_EXPORTS BaseFilter_GPU
-{
-public:
- BaseFilter_GPU(const Size& ksize_, const Point& anchor_) : ksize(ksize_), anchor(anchor_) {}
- virtual ~BaseFilter_GPU() {}
- virtual void operator()(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null()) = 0;
- Size ksize;
- Point anchor;
-};
-
-/*!
-The Base Class for Filter Engine.
-
-The class can be used to apply an arbitrary filtering operation to an image.
-It contains all the necessary intermediate buffers.
-*/
-class CV_EXPORTS FilterEngine_GPU
-{
-public:
- virtual ~FilterEngine_GPU() {}
-
- virtual void apply(const GpuMat& src, GpuMat& dst, Rect roi = Rect(0,0,-1,-1), Stream& stream = Stream::Null()) = 0;
-};
-
-//! returns the non-separable filter engine with the specified filter
-CV_EXPORTS Ptr<FilterEngine_GPU> createFilter2D_GPU(const Ptr<BaseFilter_GPU>& filter2D, int srcType, int dstType);
-
-//! returns the separable filter engine with the specified filters
-CV_EXPORTS Ptr<FilterEngine_GPU> createSeparableFilter_GPU(const Ptr<BaseRowFilter_GPU>& rowFilter,
- const Ptr<BaseColumnFilter_GPU>& columnFilter, int srcType, int bufType, int dstType);
-CV_EXPORTS Ptr<FilterEngine_GPU> createSeparableFilter_GPU(const Ptr<BaseRowFilter_GPU>& rowFilter,
- const Ptr<BaseColumnFilter_GPU>& columnFilter, int srcType, int bufType, int dstType, GpuMat& buf);
-
-//! returns horizontal 1D box filter
-//! supports only CV_8UC1 source type and CV_32FC1 sum type
-CV_EXPORTS Ptr<BaseRowFilter_GPU> getRowSumFilter_GPU(int srcType, int sumType, int ksize, int anchor = -1);
-
-//! returns vertical 1D box filter
-//! supports only CV_8UC1 sum type and CV_32FC1 dst type
-CV_EXPORTS Ptr<BaseColumnFilter_GPU> getColumnSumFilter_GPU(int sumType, int dstType, int ksize, int anchor = -1);
-
-//! returns 2D box filter
-//! supports CV_8UC1 and CV_8UC4 source type, dst type must be the same as source type
-CV_EXPORTS Ptr<BaseFilter_GPU> getBoxFilter_GPU(int srcType, int dstType, const Size& ksize, Point anchor = Point(-1, -1));
-
-//! returns box filter engine
-CV_EXPORTS Ptr<FilterEngine_GPU> createBoxFilter_GPU(int srcType, int dstType, const Size& ksize,
- const Point& anchor = Point(-1,-1));
-
-//! returns 2D morphological filter
-//! only MORPH_ERODE and MORPH_DILATE are supported
-//! supports CV_8UC1 and CV_8UC4 types
-//! kernel must have CV_8UC1 type, one rows and cols == ksize.width * ksize.height
-CV_EXPORTS Ptr<BaseFilter_GPU> getMorphologyFilter_GPU(int op, int type, const Mat& kernel, const Size& ksize,
- Point anchor=Point(-1,-1));
-
-//! returns morphological filter engine. Only MORPH_ERODE and MORPH_DILATE are supported.
-CV_EXPORTS Ptr<FilterEngine_GPU> createMorphologyFilter_GPU(int op, int type, const Mat& kernel,
- const Point& anchor = Point(-1,-1), int iterations = 1);
-CV_EXPORTS Ptr<FilterEngine_GPU> createMorphologyFilter_GPU(int op, int type, const Mat& kernel, GpuMat& buf,
- const Point& anchor = Point(-1,-1), int iterations = 1);
-
-//! returns 2D filter with the specified kernel
-//! supports CV_8U, CV_16U and CV_32F one and four channel image
-CV_EXPORTS Ptr<BaseFilter_GPU> getLinearFilter_GPU(int srcType, int dstType, const Mat& kernel, Point anchor = Point(-1, -1), int borderType = BORDER_DEFAULT);
-
-//! returns the non-separable linear filter engine
-CV_EXPORTS Ptr<FilterEngine_GPU> createLinearFilter_GPU(int srcType, int dstType, const Mat& kernel,
- Point anchor = Point(-1,-1), int borderType = BORDER_DEFAULT);
-
-//! returns the primitive row filter with the specified kernel.
-//! supports only CV_8UC1, CV_8UC4, CV_16SC1, CV_16SC2, CV_32SC1, CV_32FC1 source type.
-//! there are two version of algorithm: NPP and OpenCV.
-//! NPP calls when srcType == CV_8UC1 or srcType == CV_8UC4 and bufType == srcType,
-//! otherwise calls OpenCV version.
-//! NPP supports only BORDER_CONSTANT border type.
-//! OpenCV version supports only CV_32F as buffer depth and
-//! BORDER_REFLECT101, BORDER_REPLICATE and BORDER_CONSTANT border types.
-CV_EXPORTS Ptr<BaseRowFilter_GPU> getLinearRowFilter_GPU(int srcType, int bufType, const Mat& rowKernel,
- int anchor = -1, int borderType = BORDER_DEFAULT);
-
-//! returns the primitive column filter with the specified kernel.
-//! supports only CV_8UC1, CV_8UC4, CV_16SC1, CV_16SC2, CV_32SC1, CV_32FC1 dst type.
-//! there are two version of algorithm: NPP and OpenCV.
-//! NPP calls when dstType == CV_8UC1 or dstType == CV_8UC4 and bufType == dstType,
-//! otherwise calls OpenCV version.
-//! NPP supports only BORDER_CONSTANT border type.
-//! OpenCV version supports only CV_32F as buffer depth and
-//! BORDER_REFLECT101, BORDER_REPLICATE and BORDER_CONSTANT border types.
-CV_EXPORTS Ptr<BaseColumnFilter_GPU> getLinearColumnFilter_GPU(int bufType, int dstType, const Mat& columnKernel,
- int anchor = -1, int borderType = BORDER_DEFAULT);
-
-//! returns the separable linear filter engine
-CV_EXPORTS Ptr<FilterEngine_GPU> createSeparableLinearFilter_GPU(int srcType, int dstType, const Mat& rowKernel,
- const Mat& columnKernel, const Point& anchor = Point(-1,-1), int rowBorderType = BORDER_DEFAULT,
- int columnBorderType = -1);
-CV_EXPORTS Ptr<FilterEngine_GPU> createSeparableLinearFilter_GPU(int srcType, int dstType, const Mat& rowKernel,
- const Mat& columnKernel, GpuMat& buf, const Point& anchor = Point(-1,-1), int rowBorderType = BORDER_DEFAULT,
- int columnBorderType = -1);
-
-//! returns filter engine for the generalized Sobel operator
-CV_EXPORTS Ptr<FilterEngine_GPU> createDerivFilter_GPU(int srcType, int dstType, int dx, int dy, int ksize,
- int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1);
-CV_EXPORTS Ptr<FilterEngine_GPU> createDerivFilter_GPU(int srcType, int dstType, int dx, int dy, int ksize, GpuMat& buf,
- int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1);
-
-//! returns the Gaussian filter engine
-CV_EXPORTS Ptr<FilterEngine_GPU> createGaussianFilter_GPU(int type, Size ksize, double sigma1, double sigma2 = 0,
- int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1);
-CV_EXPORTS Ptr<FilterEngine_GPU> createGaussianFilter_GPU(int type, Size ksize, GpuMat& buf, double sigma1, double sigma2 = 0,
- int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1);
-
-//! returns maximum filter
-CV_EXPORTS Ptr<BaseFilter_GPU> getMaxFilter_GPU(int srcType, int dstType, const Size& ksize, Point anchor = Point(-1,-1));
-
-//! returns minimum filter
-CV_EXPORTS Ptr<BaseFilter_GPU> getMinFilter_GPU(int srcType, int dstType, const Size& ksize, Point anchor = Point(-1,-1));
-
-//! smooths the image using the normalized box filter
-//! supports CV_8UC1, CV_8UC4 types
-CV_EXPORTS void boxFilter(const GpuMat& src, GpuMat& dst, int ddepth, Size ksize, Point anchor = Point(-1,-1), Stream& stream = Stream::Null());
-
-//! a synonym for normalized box filter
-static inline void blur(const GpuMat& src, GpuMat& dst, Size ksize, Point anchor = Point(-1,-1), Stream& stream = Stream::Null())
-{
- boxFilter(src, dst, -1, ksize, anchor, stream);
-}
-
-//! erodes the image (applies the local minimum operator)
-CV_EXPORTS void erode(const GpuMat& src, GpuMat& dst, const Mat& kernel, Point anchor = Point(-1, -1), int iterations = 1);
-CV_EXPORTS void erode(const GpuMat& src, GpuMat& dst, const Mat& kernel, GpuMat& buf,
- Point anchor = Point(-1, -1), int iterations = 1,
- Stream& stream = Stream::Null());
-
-//! dilates the image (applies the local maximum operator)
-CV_EXPORTS void dilate(const GpuMat& src, GpuMat& dst, const Mat& kernel, Point anchor = Point(-1, -1), int iterations = 1);
-CV_EXPORTS void dilate(const GpuMat& src, GpuMat& dst, const Mat& kernel, GpuMat& buf,
- Point anchor = Point(-1, -1), int iterations = 1,
- Stream& stream = Stream::Null());
-
-//! applies an advanced morphological operation to the image
-CV_EXPORTS void morphologyEx(const GpuMat& src, GpuMat& dst, int op, const Mat& kernel, Point anchor = Point(-1, -1), int iterations = 1);
-CV_EXPORTS void morphologyEx(const GpuMat& src, GpuMat& dst, int op, const Mat& kernel, GpuMat& buf1, GpuMat& buf2,
- Point anchor = Point(-1, -1), int iterations = 1, Stream& stream = Stream::Null());
-
-//! applies non-separable 2D linear filter to the image
-CV_EXPORTS void filter2D(const GpuMat& src, GpuMat& dst, int ddepth, const Mat& kernel, Point anchor=Point(-1,-1), int borderType = BORDER_DEFAULT, Stream& stream = Stream::Null());
-
-//! applies separable 2D linear filter to the image
-CV_EXPORTS void sepFilter2D(const GpuMat& src, GpuMat& dst, int ddepth, const Mat& kernelX, const Mat& kernelY,
- Point anchor = Point(-1,-1), int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1);
-CV_EXPORTS void sepFilter2D(const GpuMat& src, GpuMat& dst, int ddepth, const Mat& kernelX, const Mat& kernelY, GpuMat& buf,
- Point anchor = Point(-1,-1), int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1,
- Stream& stream = Stream::Null());
-
-//! applies generalized Sobel operator to the image
-CV_EXPORTS void Sobel(const GpuMat& src, GpuMat& dst, int ddepth, int dx, int dy, int ksize = 3, double scale = 1,
- int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1);
-CV_EXPORTS void Sobel(const GpuMat& src, GpuMat& dst, int ddepth, int dx, int dy, GpuMat& buf, int ksize = 3, double scale = 1,
- int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1, Stream& stream = Stream::Null());
-
-//! applies the vertical or horizontal Scharr operator to the image
-CV_EXPORTS void Scharr(const GpuMat& src, GpuMat& dst, int ddepth, int dx, int dy, double scale = 1,
- int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1);
-CV_EXPORTS void Scharr(const GpuMat& src, GpuMat& dst, int ddepth, int dx, int dy, GpuMat& buf, double scale = 1,
- int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1, Stream& stream = Stream::Null());
-
-//! smooths the image using Gaussian filter.
-CV_EXPORTS void GaussianBlur(const GpuMat& src, GpuMat& dst, Size ksize, double sigma1, double sigma2 = 0,
- int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1);
-CV_EXPORTS void GaussianBlur(const GpuMat& src, GpuMat& dst, Size ksize, GpuMat& buf, double sigma1, double sigma2 = 0,
- int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1, Stream& stream = Stream::Null());
-
-//! applies Laplacian operator to the image
-//! supports only ksize = 1 and ksize = 3
-CV_EXPORTS void Laplacian(const GpuMat& src, GpuMat& dst, int ddepth, int ksize = 1, double scale = 1, int borderType = BORDER_DEFAULT, Stream& stream = Stream::Null());
-
-
-////////////////////////////// Arithmetics ///////////////////////////////////
-
-//! implements generalized matrix product algorithm GEMM from BLAS
-CV_EXPORTS void gemm(const GpuMat& src1, const GpuMat& src2, double alpha,
- const GpuMat& src3, double beta, GpuMat& dst, int flags = 0, Stream& stream = Stream::Null());
-
-//! transposes the matrix
-//! supports matrix with element size = 1, 4 and 8 bytes (CV_8UC1, CV_8UC4, CV_16UC2, CV_32FC1, etc)
-CV_EXPORTS void transpose(const GpuMat& src1, GpuMat& dst, Stream& stream = Stream::Null());
-
-//! reverses the order of the rows, columns or both in a matrix
-//! supports 1, 3 and 4 channels images with CV_8U, CV_16U, CV_32S or CV_32F depth
-CV_EXPORTS void flip(const GpuMat& a, GpuMat& b, int flipCode, Stream& stream = Stream::Null());
-
-//! transforms 8-bit unsigned integers using lookup table: dst(i)=lut(src(i))
-//! destination array will have the depth type as lut and the same channels number as source
-//! supports CV_8UC1, CV_8UC3 types
-CV_EXPORTS void LUT(const GpuMat& src, const Mat& lut, GpuMat& dst, Stream& stream = Stream::Null());
-
-//! makes multi-channel array out of several single-channel arrays
-CV_EXPORTS void merge(const GpuMat* src, size_t n, GpuMat& dst, Stream& stream = Stream::Null());
-
-//! makes multi-channel array out of several single-channel arrays
-CV_EXPORTS void merge(const vector<GpuMat>& src, GpuMat& dst, Stream& stream = Stream::Null());
-
-//! copies each plane of a multi-channel array to a dedicated array
-CV_EXPORTS void split(const GpuMat& src, GpuMat* dst, Stream& stream = Stream::Null());
-
-//! copies each plane of a multi-channel array to a dedicated array
-CV_EXPORTS void split(const GpuMat& src, vector<GpuMat>& dst, Stream& stream = Stream::Null());
-
-//! computes magnitude of complex (x(i).re, x(i).im) vector
-//! supports only CV_32FC2 type
-CV_EXPORTS void magnitude(const GpuMat& xy, GpuMat& magnitude, Stream& stream = Stream::Null());
-
-//! computes squared magnitude of complex (x(i).re, x(i).im) vector
-//! supports only CV_32FC2 type
-CV_EXPORTS void magnitudeSqr(const GpuMat& xy, GpuMat& magnitude, Stream& stream = Stream::Null());
-
-//! computes magnitude of each (x(i), y(i)) vector
-//! supports only floating-point source
-CV_EXPORTS void magnitude(const GpuMat& x, const GpuMat& y, GpuMat& magnitude, Stream& stream = Stream::Null());
-
-//! computes squared magnitude of each (x(i), y(i)) vector
-//! supports only floating-point source
-CV_EXPORTS void magnitudeSqr(const GpuMat& x, const GpuMat& y, GpuMat& magnitude, Stream& stream = Stream::Null());
-
-//! computes angle (angle(i)) of each (x(i), y(i)) vector
-//! supports only floating-point source
-CV_EXPORTS void phase(const GpuMat& x, const GpuMat& y, GpuMat& angle, bool angleInDegrees = false, Stream& stream = Stream::Null());
-
-//! converts Cartesian coordinates to polar
-//! supports only floating-point source
-CV_EXPORTS void cartToPolar(const GpuMat& x, const GpuMat& y, GpuMat& magnitude, GpuMat& angle, bool angleInDegrees = false, Stream& stream = Stream::Null());
-
-//! converts polar coordinates to Cartesian
-//! supports only floating-point source
-CV_EXPORTS void polarToCart(const GpuMat& magnitude, const GpuMat& angle, GpuMat& x, GpuMat& y, bool angleInDegrees = false, Stream& stream = Stream::Null());
-
-//! scales and shifts array elements so that either the specified norm (alpha) or the minimum (alpha) and maximum (beta) array values get the specified values
-CV_EXPORTS void normalize(const GpuMat& src, GpuMat& dst, double alpha = 1, double beta = 0,
- int norm_type = NORM_L2, int dtype = -1, const GpuMat& mask = GpuMat());
-CV_EXPORTS void normalize(const GpuMat& src, GpuMat& dst, double a, double b,
- int norm_type, int dtype, const GpuMat& mask, GpuMat& norm_buf, GpuMat& cvt_buf);
-
-
-//////////////////////////// Per-element operations ////////////////////////////////////
-
-//! adds one matrix to another (c = a + b)
-CV_EXPORTS void add(const GpuMat& a, const GpuMat& b, GpuMat& c, const GpuMat& mask = GpuMat(), int dtype = -1, Stream& stream = Stream::Null());
-//! adds scalar to a matrix (c = a + s)
-CV_EXPORTS void add(const GpuMat& a, const Scalar& sc, GpuMat& c, const GpuMat& mask = GpuMat(), int dtype = -1, Stream& stream = Stream::Null());
-
-//! subtracts one matrix from another (c = a - b)
-CV_EXPORTS void subtract(const GpuMat& a, const GpuMat& b, GpuMat& c, const GpuMat& mask = GpuMat(), int dtype = -1, Stream& stream = Stream::Null());
-//! subtracts scalar from a matrix (c = a - s)
-CV_EXPORTS void subtract(const GpuMat& a, const Scalar& sc, GpuMat& c, const GpuMat& mask = GpuMat(), int dtype = -1, Stream& stream = Stream::Null());
-
-//! computes element-wise weighted product of the two arrays (c = scale * a * b)
-CV_EXPORTS void multiply(const GpuMat& a, const GpuMat& b, GpuMat& c, double scale = 1, int dtype = -1, Stream& stream = Stream::Null());
-//! weighted multiplies matrix to a scalar (c = scale * a * s)
-CV_EXPORTS void multiply(const GpuMat& a, const Scalar& sc, GpuMat& c, double scale = 1, int dtype = -1, Stream& stream = Stream::Null());
-
-//! computes element-wise weighted quotient of the two arrays (c = a / b)
-CV_EXPORTS void divide(const GpuMat& a, const GpuMat& b, GpuMat& c, double scale = 1, int dtype = -1, Stream& stream = Stream::Null());
-//! computes element-wise weighted quotient of matrix and scalar (c = a / s)
-CV_EXPORTS void divide(const GpuMat& a, const Scalar& sc, GpuMat& c, double scale = 1, int dtype = -1, Stream& stream = Stream::Null());
-//! computes element-wise weighted reciprocal of an array (dst = scale/src2)
-CV_EXPORTS void divide(double scale, const GpuMat& b, GpuMat& c, int dtype = -1, Stream& stream = Stream::Null());
-
-//! computes the weighted sum of two arrays (dst = alpha*src1 + beta*src2 + gamma)
-CV_EXPORTS void addWeighted(const GpuMat& src1, double alpha, const GpuMat& src2, double beta, double gamma, GpuMat& dst,
- int dtype = -1, Stream& stream = Stream::Null());
-
-//! adds scaled array to another one (dst = alpha*src1 + src2)
-static inline void scaleAdd(const GpuMat& src1, double alpha, const GpuMat& src2, GpuMat& dst, Stream& stream = Stream::Null())
-{
- addWeighted(src1, alpha, src2, 1.0, 0.0, dst, -1, stream);
-}
-
-//! computes element-wise absolute difference of two arrays (c = abs(a - b))
-CV_EXPORTS void absdiff(const GpuMat& a, const GpuMat& b, GpuMat& c, Stream& stream = Stream::Null());
-//! computes element-wise absolute difference of array and scalar (c = abs(a - s))
-CV_EXPORTS void absdiff(const GpuMat& a, const Scalar& s, GpuMat& c, Stream& stream = Stream::Null());
-
-//! computes absolute value of each matrix element
-//! supports CV_16S and CV_32F depth
-CV_EXPORTS void abs(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null());
-
-//! computes square of each pixel in an image
-//! supports CV_8U, CV_16U, CV_16S and CV_32F depth
-CV_EXPORTS void sqr(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null());
-
-//! computes square root of each pixel in an image
-//! supports CV_8U, CV_16U, CV_16S and CV_32F depth
-CV_EXPORTS void sqrt(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null());
-
-//! computes exponent of each matrix element (b = e**a)
-//! supports CV_8U, CV_16U, CV_16S and CV_32F depth
-CV_EXPORTS void exp(const GpuMat& a, GpuMat& b, Stream& stream = Stream::Null());
-
-//! computes natural logarithm of absolute value of each matrix element: b = log(abs(a))
-//! supports CV_8U, CV_16U, CV_16S and CV_32F depth
-CV_EXPORTS void log(const GpuMat& a, GpuMat& b, Stream& stream = Stream::Null());
-
-//! computes power of each matrix element:
-// (dst(i,j) = pow( src(i,j) , power), if src.type() is integer
-// (dst(i,j) = pow(fabs(src(i,j)), power), otherwise
-//! supports all, except depth == CV_64F
-CV_EXPORTS void pow(const GpuMat& src, double power, GpuMat& dst, Stream& stream = Stream::Null());
-
-//! compares elements of two arrays (c = a \<cmpop\> b)
-CV_EXPORTS void compare(const GpuMat& a, const GpuMat& b, GpuMat& c, int cmpop, Stream& stream = Stream::Null());
-CV_EXPORTS void compare(const GpuMat& a, Scalar sc, GpuMat& c, int cmpop, Stream& stream = Stream::Null());
-
-//! performs per-elements bit-wise inversion
-CV_EXPORTS void bitwise_not(const GpuMat& src, GpuMat& dst, const GpuMat& mask=GpuMat(), Stream& stream = Stream::Null());
-
-//! calculates per-element bit-wise disjunction of two arrays
-CV_EXPORTS void bitwise_or(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask=GpuMat(), Stream& stream = Stream::Null());
-//! calculates per-element bit-wise disjunction of array and scalar
-//! supports 1, 3 and 4 channels images with CV_8U, CV_16U or CV_32S depth
-CV_EXPORTS void bitwise_or(const GpuMat& src1, const Scalar& sc, GpuMat& dst, Stream& stream = Stream::Null());
-
-//! calculates per-element bit-wise conjunction of two arrays
-CV_EXPORTS void bitwise_and(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask=GpuMat(), Stream& stream = Stream::Null());
-//! calculates per-element bit-wise conjunction of array and scalar
-//! supports 1, 3 and 4 channels images with CV_8U, CV_16U or CV_32S depth
-CV_EXPORTS void bitwise_and(const GpuMat& src1, const Scalar& sc, GpuMat& dst, Stream& stream = Stream::Null());
-
-//! calculates per-element bit-wise "exclusive or" operation
-CV_EXPORTS void bitwise_xor(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask=GpuMat(), Stream& stream = Stream::Null());
-//! calculates per-element bit-wise "exclusive or" of array and scalar
-//! supports 1, 3 and 4 channels images with CV_8U, CV_16U or CV_32S depth
-CV_EXPORTS void bitwise_xor(const GpuMat& src1, const Scalar& sc, GpuMat& dst, Stream& stream = Stream::Null());
-
-//! pixel by pixel right shift of an image by a constant value
-//! supports 1, 3 and 4 channels images with integers elements
-CV_EXPORTS void rshift(const GpuMat& src, Scalar_<int> sc, GpuMat& dst, Stream& stream = Stream::Null());
-
-//! pixel by pixel left shift of an image by a constant value
-//! supports 1, 3 and 4 channels images with CV_8U, CV_16U or CV_32S depth
-CV_EXPORTS void lshift(const GpuMat& src, Scalar_<int> sc, GpuMat& dst, Stream& stream = Stream::Null());
-
-//! computes per-element minimum of two arrays (dst = min(src1, src2))
-CV_EXPORTS void min(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream = Stream::Null());
-
-//! computes per-element minimum of array and scalar (dst = min(src1, src2))
-CV_EXPORTS void min(const GpuMat& src1, double src2, GpuMat& dst, Stream& stream = Stream::Null());
-
-//! computes per-element maximum of two arrays (dst = max(src1, src2))
-CV_EXPORTS void max(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream = Stream::Null());
-
-//! computes per-element maximum of array and scalar (dst = max(src1, src2))
-CV_EXPORTS void max(const GpuMat& src1, double src2, GpuMat& dst, Stream& stream = Stream::Null());
-
-enum { ALPHA_OVER, ALPHA_IN, ALPHA_OUT, ALPHA_ATOP, ALPHA_XOR, ALPHA_PLUS, ALPHA_OVER_PREMUL, ALPHA_IN_PREMUL, ALPHA_OUT_PREMUL,
- ALPHA_ATOP_PREMUL, ALPHA_XOR_PREMUL, ALPHA_PLUS_PREMUL, ALPHA_PREMUL};
-
-//! Composite two images using alpha opacity values contained in each image
-//! Supports CV_8UC4, CV_16UC4, CV_32SC4 and CV_32FC4 types
-CV_EXPORTS void alphaComp(const GpuMat& img1, const GpuMat& img2, GpuMat& dst, int alpha_op, Stream& stream = Stream::Null());
-
-
-////////////////////////////// Image processing //////////////////////////////
-
-//! DST[x,y] = SRC[xmap[x,y],ymap[x,y]]
-//! supports only CV_32FC1 map type
-CV_EXPORTS void remap(const GpuMat& src, GpuMat& dst, const GpuMat& xmap, const GpuMat& ymap,
- int interpolation, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar(),
- Stream& stream = Stream::Null());
-
-//! Does mean shift filtering on GPU.
-CV_EXPORTS void meanShiftFiltering(const GpuMat& src, GpuMat& dst, int sp, int sr,
- TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1),
- Stream& stream = Stream::Null());
-
-//! Does mean shift procedure on GPU.
-CV_EXPORTS void meanShiftProc(const GpuMat& src, GpuMat& dstr, GpuMat& dstsp, int sp, int sr,
- TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1),
- Stream& stream = Stream::Null());
-
-//! Does mean shift segmentation with elimination of small regions.
-CV_EXPORTS void meanShiftSegmentation(const GpuMat& src, Mat& dst, int sp, int sr, int minsize,
- TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1));
-
-//! Does coloring of disparity image: [0..ndisp) -> [0..240, 1, 1] in HSV.
-//! Supported types of input disparity: CV_8U, CV_16S.
-//! Output disparity has CV_8UC4 type in BGRA format (alpha = 255).
-CV_EXPORTS void drawColorDisp(const GpuMat& src_disp, GpuMat& dst_disp, int ndisp, Stream& stream = Stream::Null());
-
-//! Reprojects disparity image to 3D space.
-//! Supports CV_8U and CV_16S types of input disparity.
-//! The output is a 3- or 4-channel floating-point matrix.
-//! Each element of this matrix will contain the 3D coordinates of the point (x,y,z,1), computed from the disparity map.
-//! Q is the 4x4 perspective transformation matrix that can be obtained with cvStereoRectify.
-CV_EXPORTS void reprojectImageTo3D(const GpuMat& disp, GpuMat& xyzw, const Mat& Q, int dst_cn = 4, Stream& stream = Stream::Null());
-
-//! converts image from one color space to another
-CV_EXPORTS void cvtColor(const GpuMat& src, GpuMat& dst, int code, int dcn = 0, Stream& stream = Stream::Null());
-
-enum
-{
- // Bayer Demosaicing (Malvar, He, and Cutler)
- COLOR_BayerBG2BGR_MHT = 256,
- COLOR_BayerGB2BGR_MHT = 257,
- COLOR_BayerRG2BGR_MHT = 258,
- COLOR_BayerGR2BGR_MHT = 259,
-
- COLOR_BayerBG2RGB_MHT = COLOR_BayerRG2BGR_MHT,
- COLOR_BayerGB2RGB_MHT = COLOR_BayerGR2BGR_MHT,
- COLOR_BayerRG2RGB_MHT = COLOR_BayerBG2BGR_MHT,
- COLOR_BayerGR2RGB_MHT = COLOR_BayerGB2BGR_MHT,
-
- COLOR_BayerBG2GRAY_MHT = 260,
- COLOR_BayerGB2GRAY_MHT = 261,
- COLOR_BayerRG2GRAY_MHT = 262,
- COLOR_BayerGR2GRAY_MHT = 263
-};
-CV_EXPORTS void demosaicing(const GpuMat& src, GpuMat& dst, int code, int dcn = -1, Stream& stream = Stream::Null());
-
-//! swap channels
-//! dstOrder - Integer array describing how channel values are permutated. The n-th entry
-//! of the array contains the number of the channel that is stored in the n-th channel of
-//! the output image. E.g. Given an RGBA image, aDstOrder = [3,2,1,0] converts this to ABGR
-//! channel order.
-CV_EXPORTS void swapChannels(GpuMat& image, const int dstOrder[4], Stream& stream = Stream::Null());
-
-//! Routines for correcting image color gamma
-CV_EXPORTS void gammaCorrection(const GpuMat& src, GpuMat& dst, bool forward = true, Stream& stream = Stream::Null());
-
-//! applies fixed threshold to the image
-CV_EXPORTS double threshold(const GpuMat& src, GpuMat& dst, double thresh, double maxval, int type, Stream& stream = Stream::Null());
-
-//! resizes the image
-//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC, INTER_AREA
-CV_EXPORTS void resize(const GpuMat& src, GpuMat& dst, Size dsize, double fx=0, double fy=0, int interpolation = INTER_LINEAR, Stream& stream = Stream::Null());
-
-//! warps the image using affine transformation
-//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
-CV_EXPORTS void warpAffine(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags = INTER_LINEAR,
- int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar(), Stream& stream = Stream::Null());
-
-CV_EXPORTS void buildWarpAffineMaps(const Mat& M, bool inverse, Size dsize, GpuMat& xmap, GpuMat& ymap, Stream& stream = Stream::Null());
-
-//! warps the image using perspective transformation
-//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
-CV_EXPORTS void warpPerspective(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags = INTER_LINEAR,
- int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar(), Stream& stream = Stream::Null());
-
-CV_EXPORTS void buildWarpPerspectiveMaps(const Mat& M, bool inverse, Size dsize, GpuMat& xmap, GpuMat& ymap, Stream& stream = Stream::Null());
-
-//! builds plane warping maps
-CV_EXPORTS void buildWarpPlaneMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, const Mat &T, float scale,
- GpuMat& map_x, GpuMat& map_y, Stream& stream = Stream::Null());
-
-//! builds cylindrical warping maps
-CV_EXPORTS void buildWarpCylindricalMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, float scale,
- GpuMat& map_x, GpuMat& map_y, Stream& stream = Stream::Null());
-
-//! builds spherical warping maps
-CV_EXPORTS void buildWarpSphericalMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, float scale,
- GpuMat& map_x, GpuMat& map_y, Stream& stream = Stream::Null());
-
-//! rotates an image around the origin (0,0) and then shifts it
-//! supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
-//! supports 1, 3 or 4 channels images with CV_8U, CV_16U or CV_32F depth
-CV_EXPORTS void rotate(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift = 0, double yShift = 0,
- int interpolation = INTER_LINEAR, Stream& stream = Stream::Null());
-
-//! copies 2D array to a larger destination array and pads borders with user-specifiable constant
-CV_EXPORTS void copyMakeBorder(const GpuMat& src, GpuMat& dst, int top, int bottom, int left, int right, int borderType,
- const Scalar& value = Scalar(), Stream& stream = Stream::Null());
-
-//! computes the integral image
-//! sum will have CV_32S type, but will contain unsigned int values
-//! supports only CV_8UC1 source type
-CV_EXPORTS void integral(const GpuMat& src, GpuMat& sum, Stream& stream = Stream::Null());
-//! buffered version
-CV_EXPORTS void integralBuffered(const GpuMat& src, GpuMat& sum, GpuMat& buffer, Stream& stream = Stream::Null());
-
-//! computes squared integral image
-//! result matrix will have 64F type, but will contain 64U values
-//! supports source images of 8UC1 type only
-CV_EXPORTS void sqrIntegral(const GpuMat& src, GpuMat& sqsum, Stream& stream = Stream::Null());
-
-//! computes vertical sum, supports only CV_32FC1 images
-CV_EXPORTS void columnSum(const GpuMat& src, GpuMat& sum);
-
-//! computes the standard deviation of integral images
-//! supports only CV_32SC1 source type and CV_32FC1 sqr type
-//! output will have CV_32FC1 type
-CV_EXPORTS void rectStdDev(const GpuMat& src, const GpuMat& sqr, GpuMat& dst, const Rect& rect, Stream& stream = Stream::Null());
-
-//! computes Harris cornerness criteria at each image pixel
-CV_EXPORTS void cornerHarris(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, double k, int borderType = BORDER_REFLECT101);
-CV_EXPORTS void cornerHarris(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, int blockSize, int ksize, double k, int borderType = BORDER_REFLECT101);
-CV_EXPORTS void cornerHarris(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, GpuMat& buf, int blockSize, int ksize, double k,
- int borderType = BORDER_REFLECT101, Stream& stream = Stream::Null());
-
-//! computes minimum eigen value of 2x2 derivative covariation matrix at each pixel - the cornerness criteria
-CV_EXPORTS void cornerMinEigenVal(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, int borderType=BORDER_REFLECT101);
-CV_EXPORTS void cornerMinEigenVal(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, int blockSize, int ksize, int borderType=BORDER_REFLECT101);
-CV_EXPORTS void cornerMinEigenVal(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, GpuMat& buf, int blockSize, int ksize,
- int borderType=BORDER_REFLECT101, Stream& stream = Stream::Null());
-
-//! performs per-element multiplication of two full (not packed) Fourier spectrums
-//! supports 32FC2 matrices only (interleaved format)
-CV_EXPORTS void mulSpectrums(const GpuMat& a, const GpuMat& b, GpuMat& c, int flags, bool conjB=false, Stream& stream = Stream::Null());
-
-//! performs per-element multiplication of two full (not packed) Fourier spectrums
-//! supports 32FC2 matrices only (interleaved format)
-CV_EXPORTS void mulAndScaleSpectrums(const GpuMat& a, const GpuMat& b, GpuMat& c, int flags, float scale, bool conjB=false, Stream& stream = Stream::Null());
-
-//! Performs a forward or inverse discrete Fourier transform (1D or 2D) of floating point matrix.
-//! Param dft_size is the size of DFT transform.
-//!
-//! If the source matrix is not continous, then additional copy will be done,
-//! so to avoid copying ensure the source matrix is continous one. If you want to use
-//! preallocated output ensure it is continuous too, otherwise it will be reallocated.
-//!
-//! Being implemented via CUFFT real-to-complex transform result contains only non-redundant values
-//! in CUFFT's format. Result as full complex matrix for such kind of transform cannot be retrieved.
-//!
-//! For complex-to-real transform it is assumed that the source matrix is packed in CUFFT's format.
-CV_EXPORTS void dft(const GpuMat& src, GpuMat& dst, Size dft_size, int flags=0, Stream& stream = Stream::Null());
-
-struct CV_EXPORTS ConvolveBuf
-{
- Size result_size;
- Size block_size;
- Size user_block_size;
- Size dft_size;
- int spect_len;
-
- GpuMat image_spect, templ_spect, result_spect;
- GpuMat image_block, templ_block, result_data;
-
- void create(Size image_size, Size templ_size);
- static Size estimateBlockSize(Size result_size, Size templ_size);
-};
-
-
-//! computes convolution (or cross-correlation) of two images using discrete Fourier transform
-//! supports source images of 32FC1 type only
-//! result matrix will have 32FC1 type
-CV_EXPORTS void convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result, bool ccorr = false);
-CV_EXPORTS void convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result, bool ccorr, ConvolveBuf& buf, Stream& stream = Stream::Null());
-
-struct CV_EXPORTS MatchTemplateBuf
-{
- Size user_block_size;
- GpuMat imagef, templf;
- std::vector<GpuMat> images;
- std::vector<GpuMat> image_sums;
- std::vector<GpuMat> image_sqsums;
-};
-
-//! computes the proximity map for the raster template and the image where the template is searched for
-CV_EXPORTS void matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& result, int method, Stream &stream = Stream::Null());
-
-//! computes the proximity map for the raster template and the image where the template is searched for
-CV_EXPORTS void matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& result, int method, MatchTemplateBuf &buf, Stream& stream = Stream::Null());
-
-//! smoothes the source image and downsamples it
-CV_EXPORTS void pyrDown(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null());
-
-//! upsamples the source image and then smoothes it
-CV_EXPORTS void pyrUp(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null());
-
-//! performs linear blending of two images
-//! to avoid accuracy errors sum of weigths shouldn't be very close to zero
-CV_EXPORTS void blendLinear(const GpuMat& img1, const GpuMat& img2, const GpuMat& weights1, const GpuMat& weights2,
- GpuMat& result, Stream& stream = Stream::Null());
-
-//! Performa bilateral filtering of passsed image
-CV_EXPORTS void bilateralFilter(const GpuMat& src, GpuMat& dst, int kernel_size, float sigma_color, float sigma_spatial,
- int borderMode = BORDER_DEFAULT, Stream& stream = Stream::Null());
-
-//! Brute force non-local means algorith (slow but universal)
-CV_EXPORTS void nonLocalMeans(const GpuMat& src, GpuMat& dst, float h, int search_window = 21, int block_size = 7, int borderMode = BORDER_DEFAULT, Stream& s = Stream::Null());
-
-//! Fast (but approximate)version of non-local means algorith similar to CPU function (running sums technique)
-class CV_EXPORTS FastNonLocalMeansDenoising
-{
-public:
- //! Simple method, recommended for grayscale images (though it supports multichannel images)
- void simpleMethod(const GpuMat& src, GpuMat& dst, float h, int search_window = 21, int block_size = 7, Stream& s = Stream::Null());
-
- //! Processes luminance and color components separatelly
- void labMethod(const GpuMat& src, GpuMat& dst, float h_luminance, float h_color, int search_window = 21, int block_size = 7, Stream& s = Stream::Null());
-
-private:
-
- GpuMat buffer, extended_src_buffer;
- GpuMat lab, l, ab;
-};
-
-struct CV_EXPORTS CannyBuf
-{
- void create(const Size& image_size, int apperture_size = 3);
- void release();
-
- GpuMat dx, dy;
- GpuMat mag;
- GpuMat map;
- GpuMat st1, st2;
- GpuMat unused;
- Ptr<FilterEngine_GPU> filterDX, filterDY;
-
- CannyBuf() {}
- explicit CannyBuf(const Size& image_size, int apperture_size = 3) {create(image_size, apperture_size);}
- CannyBuf(const GpuMat& dx_, const GpuMat& dy_);
-};
-
-CV_EXPORTS void Canny(const GpuMat& image, GpuMat& edges, double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false);
-CV_EXPORTS void Canny(const GpuMat& image, CannyBuf& buf, GpuMat& edges, double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false);
-CV_EXPORTS void Canny(const GpuMat& dx, const GpuMat& dy, GpuMat& edges, double low_thresh, double high_thresh, bool L2gradient = false);
-CV_EXPORTS void Canny(const GpuMat& dx, const GpuMat& dy, CannyBuf& buf, GpuMat& edges, double low_thresh, double high_thresh, bool L2gradient = false);
-
-class CV_EXPORTS ImagePyramid
-{
-public:
- inline ImagePyramid() : nLayers_(0) {}
- inline ImagePyramid(const GpuMat& img, int nLayers, Stream& stream = Stream::Null())
- {
- build(img, nLayers, stream);
- }
-
- void build(const GpuMat& img, int nLayers, Stream& stream = Stream::Null());
-
- void getLayer(GpuMat& outImg, Size outRoi, Stream& stream = Stream::Null()) const;
-
- inline void release()
- {
- layer0_.release();
- pyramid_.clear();
- nLayers_ = 0;
- }
-
-private:
- GpuMat layer0_;
- std::vector<GpuMat> pyramid_;
- int nLayers_;
-};
-
-//! HoughLines
-
-struct HoughLinesBuf
-{
- GpuMat accum;
- GpuMat list;
-};
-
-CV_EXPORTS void HoughLines(const GpuMat& src, GpuMat& lines, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096);
-CV_EXPORTS void HoughLines(const GpuMat& src, GpuMat& lines, HoughLinesBuf& buf, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096);
-CV_EXPORTS void HoughLinesDownload(const GpuMat& d_lines, OutputArray h_lines, OutputArray h_votes = noArray());
-
-//! HoughLinesP
-
-//! finds line segments in the black-n-white image using probabalistic Hough transform
-CV_EXPORTS void HoughLinesP(const GpuMat& image, GpuMat& lines, HoughLinesBuf& buf, float rho, float theta, int minLineLength, int maxLineGap, int maxLines = 4096);
-
-//! HoughCircles
-
-struct HoughCirclesBuf
-{
- GpuMat edges;
- GpuMat accum;
- GpuMat list;
- CannyBuf cannyBuf;
-};
-
-CV_EXPORTS void HoughCircles(const GpuMat& src, GpuMat& circles, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096);
-CV_EXPORTS void HoughCircles(const GpuMat& src, GpuMat& circles, HoughCirclesBuf& buf, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096);
-CV_EXPORTS void HoughCirclesDownload(const GpuMat& d_circles, OutputArray h_circles);
-
-//! finds arbitrary template in the grayscale image using Generalized Hough Transform
-//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122.
-//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038.
-class CV_EXPORTS GeneralizedHough_GPU : public Algorithm
-{
-public:
- static Ptr<GeneralizedHough_GPU> create(int method);
-
- virtual ~GeneralizedHough_GPU();
-
- //! set template to search
- void setTemplate(const GpuMat& templ, int cannyThreshold = 100, Point templCenter = Point(-1, -1));
- void setTemplate(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Point templCenter = Point(-1, -1));
-
- //! find template on image
- void detect(const GpuMat& image, GpuMat& positions, int cannyThreshold = 100);
- void detect(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, GpuMat& positions);
-
- void download(const GpuMat& d_positions, OutputArray h_positions, OutputArray h_votes = noArray());
-
- void release();
-
-protected:
- virtual void setTemplateImpl(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Point templCenter) = 0;
- virtual void detectImpl(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, GpuMat& positions) = 0;
- virtual void releaseImpl() = 0;
-
-private:
- GpuMat edges_;
- CannyBuf cannyBuf_;
-};
-
-////////////////////////////// Matrix reductions //////////////////////////////
-
-//! computes mean value and standard deviation of all or selected array elements
-//! supports only CV_8UC1 type
-CV_EXPORTS void meanStdDev(const GpuMat& mtx, Scalar& mean, Scalar& stddev);
-//! buffered version
-CV_EXPORTS void meanStdDev(const GpuMat& mtx, Scalar& mean, Scalar& stddev, GpuMat& buf);
-
-//! computes norm of array
-//! supports NORM_INF, NORM_L1, NORM_L2
-//! supports all matrices except 64F
-CV_EXPORTS double norm(const GpuMat& src1, int normType=NORM_L2);
-CV_EXPORTS double norm(const GpuMat& src1, int normType, GpuMat& buf);
-CV_EXPORTS double norm(const GpuMat& src1, int normType, const GpuMat& mask, GpuMat& buf);
-
-//! computes norm of the difference between two arrays
-//! supports NORM_INF, NORM_L1, NORM_L2
-//! supports only CV_8UC1 type
-CV_EXPORTS double norm(const GpuMat& src1, const GpuMat& src2, int normType=NORM_L2);
-
-//! computes sum of array elements
-//! supports only single channel images
-CV_EXPORTS Scalar sum(const GpuMat& src);
-CV_EXPORTS Scalar sum(const GpuMat& src, GpuMat& buf);
-CV_EXPORTS Scalar sum(const GpuMat& src, const GpuMat& mask, GpuMat& buf);
-
-//! computes sum of array elements absolute values
-//! supports only single channel images
-CV_EXPORTS Scalar absSum(const GpuMat& src);
-CV_EXPORTS Scalar absSum(const GpuMat& src, GpuMat& buf);
-CV_EXPORTS Scalar absSum(const GpuMat& src, const GpuMat& mask, GpuMat& buf);
-
-//! computes squared sum of array elements
-//! supports only single channel images
-CV_EXPORTS Scalar sqrSum(const GpuMat& src);
-CV_EXPORTS Scalar sqrSum(const GpuMat& src, GpuMat& buf);
-CV_EXPORTS Scalar sqrSum(const GpuMat& src, const GpuMat& mask, GpuMat& buf);
-
-//! finds global minimum and maximum array elements and returns their values
-CV_EXPORTS void minMax(const GpuMat& src, double* minVal, double* maxVal=0, const GpuMat& mask=GpuMat());
-CV_EXPORTS void minMax(const GpuMat& src, double* minVal, double* maxVal, const GpuMat& mask, GpuMat& buf);
-
-//! finds global minimum and maximum array elements and returns their values with locations
-CV_EXPORTS void minMaxLoc(const GpuMat& src, double* minVal, double* maxVal=0, Point* minLoc=0, Point* maxLoc=0,
- const GpuMat& mask=GpuMat());
-CV_EXPORTS void minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point* minLoc, Point* maxLoc,
- const GpuMat& mask, GpuMat& valbuf, GpuMat& locbuf);
-
-//! counts non-zero array elements
-CV_EXPORTS int countNonZero(const GpuMat& src);
-CV_EXPORTS int countNonZero(const GpuMat& src, GpuMat& buf);
-
-//! reduces a matrix to a vector
-CV_EXPORTS void reduce(const GpuMat& mtx, GpuMat& vec, int dim, int reduceOp, int dtype = -1, Stream& stream = Stream::Null());
-
-
-///////////////////////////// Calibration 3D //////////////////////////////////
-
-CV_EXPORTS void transformPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec,
- GpuMat& dst, Stream& stream = Stream::Null());
-
-CV_EXPORTS void projectPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec,
- const Mat& camera_mat, const Mat& dist_coef, GpuMat& dst,
- Stream& stream = Stream::Null());
-
-CV_EXPORTS void solvePnPRansac(const Mat& object, const Mat& image, const Mat& camera_mat,
- const Mat& dist_coef, Mat& rvec, Mat& tvec, bool use_extrinsic_guess=false,
- int num_iters=100, float max_dist=8.0, int min_inlier_count=100,
- std::vector<int>* inliers=NULL);
-
-//////////////////////////////// Image Labeling ////////////////////////////////
-
-//!performs labeling via graph cuts of a 2D regular 4-connected graph.
-CV_EXPORTS void graphcut(GpuMat& terminals, GpuMat& leftTransp, GpuMat& rightTransp, GpuMat& top, GpuMat& bottom, GpuMat& labels,
- GpuMat& buf, Stream& stream = Stream::Null());
-
-//!performs labeling via graph cuts of a 2D regular 8-connected graph.
-CV_EXPORTS void graphcut(GpuMat& terminals, GpuMat& leftTransp, GpuMat& rightTransp, GpuMat& top, GpuMat& topLeft, GpuMat& topRight,
- GpuMat& bottom, GpuMat& bottomLeft, GpuMat& bottomRight,
- GpuMat& labels,
- GpuMat& buf, Stream& stream = Stream::Null());
-
-//! compute mask for Generalized Flood fill componetns labeling.
-CV_EXPORTS void connectivityMask(const GpuMat& image, GpuMat& mask, const cv::Scalar& lo, const cv::Scalar& hi, Stream& stream = Stream::Null());
-
-//! performs connected componnents labeling.
-CV_EXPORTS void labelComponents(const GpuMat& mask, GpuMat& components, int flags = 0, Stream& stream = Stream::Null());
-
-////////////////////////////////// Histograms //////////////////////////////////
-
-//! Compute levels with even distribution. levels will have 1 row and nLevels cols and CV_32SC1 type.
-CV_EXPORTS void evenLevels(GpuMat& levels, int nLevels, int lowerLevel, int upperLevel);
-//! Calculates histogram with evenly distributed bins for signle channel source.
-//! Supports CV_8UC1, CV_16UC1 and CV_16SC1 source types.
-//! Output hist will have one row and histSize cols and CV_32SC1 type.
-CV_EXPORTS void histEven(const GpuMat& src, GpuMat& hist, int histSize, int lowerLevel, int upperLevel, Stream& stream = Stream::Null());
-CV_EXPORTS void histEven(const GpuMat& src, GpuMat& hist, GpuMat& buf, int histSize, int lowerLevel, int upperLevel, Stream& stream = Stream::Null());
-//! Calculates histogram with evenly distributed bins for four-channel source.
-//! All channels of source are processed separately.
-//! Supports CV_8UC4, CV_16UC4 and CV_16SC4 source types.
-//! Output hist[i] will have one row and histSize[i] cols and CV_32SC1 type.
-CV_EXPORTS void histEven(const GpuMat& src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream = Stream::Null());
-CV_EXPORTS void histEven(const GpuMat& src, GpuMat hist[4], GpuMat& buf, int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream = Stream::Null());
-//! Calculates histogram with bins determined by levels array.
-//! levels must have one row and CV_32SC1 type if source has integer type or CV_32FC1 otherwise.
-//! Supports CV_8UC1, CV_16UC1, CV_16SC1 and CV_32FC1 source types.
-//! Output hist will have one row and (levels.cols-1) cols and CV_32SC1 type.
-CV_EXPORTS void histRange(const GpuMat& src, GpuMat& hist, const GpuMat& levels, Stream& stream = Stream::Null());
-CV_EXPORTS void histRange(const GpuMat& src, GpuMat& hist, const GpuMat& levels, GpuMat& buf, Stream& stream = Stream::Null());
-//! Calculates histogram with bins determined by levels array.
-//! All levels must have one row and CV_32SC1 type if source has integer type or CV_32FC1 otherwise.
-//! All channels of source are processed separately.
-//! Supports CV_8UC4, CV_16UC4, CV_16SC4 and CV_32FC4 source types.
-//! Output hist[i] will have one row and (levels[i].cols-1) cols and CV_32SC1 type.
-CV_EXPORTS void histRange(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], Stream& stream = Stream::Null());
-CV_EXPORTS void histRange(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], GpuMat& buf, Stream& stream = Stream::Null());
-
-//! Calculates histogram for 8u one channel image
-//! Output hist will have one row, 256 cols and CV32SC1 type.
-CV_EXPORTS void calcHist(const GpuMat& src, GpuMat& hist, Stream& stream = Stream::Null());
-CV_EXPORTS void calcHist(const GpuMat& src, GpuMat& hist, GpuMat& buf, Stream& stream = Stream::Null());
-
-//! normalizes the grayscale image brightness and contrast by normalizing its histogram
-CV_EXPORTS void equalizeHist(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null());
-CV_EXPORTS void equalizeHist(const GpuMat& src, GpuMat& dst, GpuMat& hist, Stream& stream = Stream::Null());
-CV_EXPORTS void equalizeHist(const GpuMat& src, GpuMat& dst, GpuMat& hist, GpuMat& buf, Stream& stream = Stream::Null());
-
-class CV_EXPORTS CLAHE : public cv::CLAHE
-{
-public:
- using cv::CLAHE::apply;
- virtual void apply(InputArray src, OutputArray dst, Stream& stream) = 0;
-};
-CV_EXPORTS Ptr<cv::gpu::CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8));
-
-//////////////////////////////// StereoBM_GPU ////////////////////////////////
-
-class CV_EXPORTS StereoBM_GPU
-{
-public:
- enum { BASIC_PRESET = 0, PREFILTER_XSOBEL = 1 };
-
- enum { DEFAULT_NDISP = 64, DEFAULT_WINSZ = 19 };
-
- //! the default constructor
- StereoBM_GPU();
- //! the full constructor taking the camera-specific preset, number of disparities and the SAD window size. ndisparities must be multiple of 8.
- StereoBM_GPU(int preset, int ndisparities = DEFAULT_NDISP, int winSize = DEFAULT_WINSZ);
-
- //! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair
- //! Output disparity has CV_8U type.
- void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null());
-
- //! Some heuristics that tries to estmate
- // if current GPU will be faster than CPU in this algorithm.
- // It queries current active device.
- static bool checkIfGpuCallReasonable();
-
- int preset;
- int ndisp;
- int winSize;
-
- // If avergeTexThreshold == 0 => post procesing is disabled
- // If avergeTexThreshold != 0 then disparity is set 0 in each point (x,y) where for left image
- // SumOfHorizontalGradiensInWindow(x, y, winSize) < (winSize * winSize) * avergeTexThreshold
- // i.e. input left image is low textured.
- float avergeTexThreshold;
-
-private:
- GpuMat minSSD, leBuf, riBuf;
-};
-
-////////////////////////// StereoBeliefPropagation ///////////////////////////
-// "Efficient Belief Propagation for Early Vision"
-// P.Felzenszwalb
-
-class CV_EXPORTS StereoBeliefPropagation
-{
-public:
- enum { DEFAULT_NDISP = 64 };
- enum { DEFAULT_ITERS = 5 };
- enum { DEFAULT_LEVELS = 5 };
-
- static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels);
-
- //! the default constructor
- explicit StereoBeliefPropagation(int ndisp = DEFAULT_NDISP,
- int iters = DEFAULT_ITERS,
- int levels = DEFAULT_LEVELS,
- int msg_type = CV_32F);
-
- //! the full constructor taking the number of disparities, number of BP iterations on each level,
- //! number of levels, truncation of data cost, data weight,
- //! truncation of discontinuity cost and discontinuity single jump
- //! DataTerm = data_weight * min(fabs(I2-I1), max_data_term)
- //! DiscTerm = min(disc_single_jump * fabs(f1-f2), max_disc_term)
- //! please see paper for more details
- StereoBeliefPropagation(int ndisp, int iters, int levels,
- float max_data_term, float data_weight,
- float max_disc_term, float disc_single_jump,
- int msg_type = CV_32F);
-
- //! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair,
- //! if disparity is empty output type will be CV_16S else output type will be disparity.type().
- void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null());
-
-
- //! version for user specified data term
- void operator()(const GpuMat& data, GpuMat& disparity, Stream& stream = Stream::Null());
-
- int ndisp;
-
- int iters;
- int levels;
-
- float max_data_term;
- float data_weight;
- float max_disc_term;
- float disc_single_jump;
-
- int msg_type;
-private:
- GpuMat u, d, l, r, u2, d2, l2, r2;
- std::vector<GpuMat> datas;
- GpuMat out;
-};
-
-/////////////////////////// StereoConstantSpaceBP ///////////////////////////
-// "A Constant-Space Belief Propagation Algorithm for Stereo Matching"
-// Qingxiong Yang, Liang Wang, Narendra Ahuja
-// http://vision.ai.uiuc.edu/~qyang6/
-
-class CV_EXPORTS StereoConstantSpaceBP
-{
-public:
- enum { DEFAULT_NDISP = 128 };
- enum { DEFAULT_ITERS = 8 };
- enum { DEFAULT_LEVELS = 4 };
- enum { DEFAULT_NR_PLANE = 4 };
-
- static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels, int& nr_plane);
-
- //! the default constructor
- explicit StereoConstantSpaceBP(int ndisp = DEFAULT_NDISP,
- int iters = DEFAULT_ITERS,
- int levels = DEFAULT_LEVELS,
- int nr_plane = DEFAULT_NR_PLANE,
- int msg_type = CV_32F);
-
- //! the full constructor taking the number of disparities, number of BP iterations on each level,
- //! number of levels, number of active disparity on the first level, truncation of data cost, data weight,
- //! truncation of discontinuity cost, discontinuity single jump and minimum disparity threshold
- StereoConstantSpaceBP(int ndisp, int iters, int levels, int nr_plane,
- float max_data_term, float data_weight, float max_disc_term, float disc_single_jump,
- int min_disp_th = 0,
- int msg_type = CV_32F);
-
- //! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair,
- //! if disparity is empty output type will be CV_16S else output type will be disparity.type().
- void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null());
-
- int ndisp;
-
- int iters;
- int levels;
-
- int nr_plane;
-
- float max_data_term;
- float data_weight;
- float max_disc_term;
- float disc_single_jump;
-
- int min_disp_th;
-
- int msg_type;
-
- bool use_local_init_data_cost;
-private:
- GpuMat messages_buffers;
-
- GpuMat temp;
- GpuMat out;
-};
-
-/////////////////////////// DisparityBilateralFilter ///////////////////////////
-// Disparity map refinement using joint bilateral filtering given a single color image.
-// Qingxiong Yang, Liang Wang, Narendra Ahuja
-// http://vision.ai.uiuc.edu/~qyang6/
-
-class CV_EXPORTS DisparityBilateralFilter
-{
-public:
- enum { DEFAULT_NDISP = 64 };
- enum { DEFAULT_RADIUS = 3 };
- enum { DEFAULT_ITERS = 1 };
-
- //! the default constructor
- explicit DisparityBilateralFilter(int ndisp = DEFAULT_NDISP, int radius = DEFAULT_RADIUS, int iters = DEFAULT_ITERS);
-
- //! the full constructor taking the number of disparities, filter radius,
- //! number of iterations, truncation of data continuity, truncation of disparity continuity
- //! and filter range sigma
- DisparityBilateralFilter(int ndisp, int radius, int iters, float edge_threshold, float max_disc_threshold, float sigma_range);
-
- //! the disparity map refinement operator. Refine disparity map using joint bilateral filtering given a single color image.
- //! disparity must have CV_8U or CV_16S type, image must have CV_8UC1 or CV_8UC3 type.
- void operator()(const GpuMat& disparity, const GpuMat& image, GpuMat& dst, Stream& stream = Stream::Null());
-
-private:
- int ndisp;
- int radius;
- int iters;
-
- float edge_threshold;
- float max_disc_threshold;
- float sigma_range;
-
- GpuMat table_color;
- GpuMat table_space;
-};
-
-
-//////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //////////////
-struct CV_EXPORTS HOGConfidence
-{
- double scale;
- vector<Point> locations;
- vector<double> confidences;
- vector<double> part_scores[4];
-};
-
-struct CV_EXPORTS HOGDescriptor
-{
- enum { DEFAULT_WIN_SIGMA = -1 };
- enum { DEFAULT_NLEVELS = 64 };
- enum { DESCR_FORMAT_ROW_BY_ROW, DESCR_FORMAT_COL_BY_COL };
-
- HOGDescriptor(Size win_size=Size(64, 128), Size block_size=Size(16, 16),
- Size block_stride=Size(8, 8), Size cell_size=Size(8, 8),
- int nbins=9, double win_sigma=DEFAULT_WIN_SIGMA,
- double threshold_L2hys=0.2, bool gamma_correction=true,
- int nlevels=DEFAULT_NLEVELS);
-
- size_t getDescriptorSize() const;
- size_t getBlockHistogramSize() const;
-
- void setSVMDetector(const vector<float>& detector);
-
- static vector<float> getDefaultPeopleDetector();
- static vector<float> getPeopleDetector48x96();
- static vector<float> getPeopleDetector64x128();
-
- void detect(const GpuMat& img, vector<Point>& found_locations,
- double hit_threshold=0, Size win_stride=Size(),
- Size padding=Size());
-
- void detectMultiScale(const GpuMat& img, vector<Rect>& found_locations,
- double hit_threshold=0, Size win_stride=Size(),
- Size padding=Size(), double scale0=1.05,
- int group_threshold=2);
-
- void computeConfidence(const GpuMat& img, vector<Point>& hits, double hit_threshold,
- Size win_stride, Size padding, vector<Point>& locations, vector<double>& confidences);
-
- void computeConfidenceMultiScale(const GpuMat& img, vector<Rect>& found_locations,
- double hit_threshold, Size win_stride, Size padding,
- vector<HOGConfidence> &conf_out, int group_threshold);
-
- void getDescriptors(const GpuMat& img, Size win_stride,
- GpuMat& descriptors,
- int descr_format=DESCR_FORMAT_COL_BY_COL);
-
- Size win_size;
- Size block_size;
- Size block_stride;
- Size cell_size;
- int nbins;
- double win_sigma;
- double threshold_L2hys;
- bool gamma_correction;
- int nlevels;
-
-protected:
- void computeBlockHistograms(const GpuMat& img);
- void computeGradient(const GpuMat& img, GpuMat& grad, GpuMat& qangle);
-
- double getWinSigma() const;
- bool checkDetectorSize() const;
-
- static int numPartsWithin(int size, int part_size, int stride);
- static Size numPartsWithin(Size size, Size part_size, Size stride);
-
- // Coefficients of the separating plane
- float free_coef;
- GpuMat detector;
-
- // Results of the last classification step
- GpuMat labels, labels_buf;
- Mat labels_host;
-
- // Results of the last histogram evaluation step
- GpuMat block_hists, block_hists_buf;
-
- // Gradients conputation results
- GpuMat grad, qangle, grad_buf, qangle_buf;
-
- // returns subbuffer with required size, reallocates buffer if nessesary.
- static GpuMat getBuffer(const Size& sz, int type, GpuMat& buf);
- static GpuMat getBuffer(int rows, int cols, int type, GpuMat& buf);
-
- std::vector<GpuMat> image_scales;
-};
-
-
-////////////////////////////////// BruteForceMatcher //////////////////////////////////
-
-class CV_EXPORTS BruteForceMatcher_GPU_base
-{
-public:
- enum DistType {L1Dist = 0, L2Dist, HammingDist};
-
- explicit BruteForceMatcher_GPU_base(DistType distType = L2Dist);
-
- // Add descriptors to train descriptor collection
- void add(const std::vector<GpuMat>& descCollection);
-
- // Get train descriptors collection
- const std::vector<GpuMat>& getTrainDescriptors() const;
-
- // Clear train descriptors collection
- void clear();
-
- // Return true if there are not train descriptors in collection
- bool empty() const;
-
- // Return true if the matcher supports mask in match methods
- bool isMaskSupported() const;
-
- // Find one best match for each query descriptor
- void matchSingle(const GpuMat& query, const GpuMat& train,
- GpuMat& trainIdx, GpuMat& distance,
- const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null());
-
- // Download trainIdx and distance and convert it to CPU vector with DMatch
- static void matchDownload(const GpuMat& trainIdx, const GpuMat& distance, std::vector<DMatch>& matches);
- // Convert trainIdx and distance to vector with DMatch
- static void matchConvert(const Mat& trainIdx, const Mat& distance, std::vector<DMatch>& matches);
-
- // Find one best match for each query descriptor
- void match(const GpuMat& query, const GpuMat& train, std::vector<DMatch>& matches, const GpuMat& mask = GpuMat());
-
- // Make gpu collection of trains and masks in suitable format for matchCollection function
- void makeGpuCollection(GpuMat& trainCollection, GpuMat& maskCollection, const std::vector<GpuMat>& masks = std::vector<GpuMat>());
-
- // Find one best match from train collection for each query descriptor
- void matchCollection(const GpuMat& query, const GpuMat& trainCollection,
- GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance,
- const GpuMat& masks = GpuMat(), Stream& stream = Stream::Null());
-
- // Download trainIdx, imgIdx and distance and convert it to vector with DMatch
- static void matchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, std::vector<DMatch>& matches);
- // Convert trainIdx, imgIdx and distance to vector with DMatch
- static void matchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, std::vector<DMatch>& matches);
-
- // Find one best match from train collection for each query descriptor.
- void match(const GpuMat& query, std::vector<DMatch>& matches, const std::vector<GpuMat>& masks = std::vector<GpuMat>());
-
- // Find k best matches for each query descriptor (in increasing order of distances)
- void knnMatchSingle(const GpuMat& query, const GpuMat& train,
- GpuMat& trainIdx, GpuMat& distance, GpuMat& allDist, int k,
- const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null());
-
- // Download trainIdx and distance and convert it to vector with DMatch
- // compactResult is used when mask is not empty. If compactResult is false matches
- // vector will have the same size as queryDescriptors rows. If compactResult is true
- // matches vector will not contain matches for fully masked out query descriptors.
- static void knnMatchDownload(const GpuMat& trainIdx, const GpuMat& distance,
- std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
- // Convert trainIdx and distance to vector with DMatch
- static void knnMatchConvert(const Mat& trainIdx, const Mat& distance,
- std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
-
- // Find k best matches for each query descriptor (in increasing order of distances).
- // compactResult is used when mask is not empty. If compactResult is false matches
- // vector will have the same size as queryDescriptors rows. If compactResult is true
- // matches vector will not contain matches for fully masked out query descriptors.
- void knnMatch(const GpuMat& query, const GpuMat& train,
- std::vector< std::vector<DMatch> >& matches, int k, const GpuMat& mask = GpuMat(),
- bool compactResult = false);
-
- // Find k best matches from train collection for each query descriptor (in increasing order of distances)
- void knnMatch2Collection(const GpuMat& query, const GpuMat& trainCollection,
- GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance,
- const GpuMat& maskCollection = GpuMat(), Stream& stream = Stream::Null());
-
- // Download trainIdx and distance and convert it to vector with DMatch
- // compactResult is used when mask is not empty. If compactResult is false matches
- // vector will have the same size as queryDescriptors rows. If compactResult is true
- // matches vector will not contain matches for fully masked out query descriptors.
- static void knnMatch2Download(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance,
- std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
- // Convert trainIdx and distance to vector with DMatch
- static void knnMatch2Convert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance,
- std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
-
- // Find k best matches for each query descriptor (in increasing order of distances).
- // compactResult is used when mask is not empty. If compactResult is false matches
- // vector will have the same size as queryDescriptors rows. If compactResult is true
- // matches vector will not contain matches for fully masked out query descriptors.
- void knnMatch(const GpuMat& query, std::vector< std::vector<DMatch> >& matches, int k,
- const std::vector<GpuMat>& masks = std::vector<GpuMat>(), bool compactResult = false);
-
- // Find best matches for each query descriptor which have distance less than maxDistance.
- // nMatches.at<int>(0, queryIdx) will contain matches count for queryIdx.
- // carefully nMatches can be greater than trainIdx.cols - it means that matcher didn't find all matches,
- // because it didn't have enough memory.
- // If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nTrain / 100), 10),
- // otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches
- // Matches doesn't sorted.
- void radiusMatchSingle(const GpuMat& query, const GpuMat& train,
- GpuMat& trainIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance,
- const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null());
-
- // Download trainIdx, nMatches and distance and convert it to vector with DMatch.
- // matches will be sorted in increasing order of distances.
- // compactResult is used when mask is not empty. If compactResult is false matches
- // vector will have the same size as queryDescriptors rows. If compactResult is true
- // matches vector will not contain matches for fully masked out query descriptors.
- static void radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& distance, const GpuMat& nMatches,
- std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
- // Convert trainIdx, nMatches and distance to vector with DMatch.
- static void radiusMatchConvert(const Mat& trainIdx, const Mat& distance, const Mat& nMatches,
- std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
-
- // Find best matches for each query descriptor which have distance less than maxDistance
- // in increasing order of distances).
- void radiusMatch(const GpuMat& query, const GpuMat& train,
- std::vector< std::vector<DMatch> >& matches, float maxDistance,
- const GpuMat& mask = GpuMat(), bool compactResult = false);
-
- // Find best matches for each query descriptor which have distance less than maxDistance.
- // If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nQuery / 100), 10),
- // otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches
- // Matches doesn't sorted.
- void radiusMatchCollection(const GpuMat& query, GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance,
- const std::vector<GpuMat>& masks = std::vector<GpuMat>(), Stream& stream = Stream::Null());
-
- // Download trainIdx, imgIdx, nMatches and distance and convert it to vector with DMatch.
- // matches will be sorted in increasing order of distances.
- // compactResult is used when mask is not empty. If compactResult is false matches
- // vector will have the same size as queryDescriptors rows. If compactResult is true
- // matches vector will not contain matches for fully masked out query descriptors.
- static void radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, const GpuMat& nMatches,
- std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
- // Convert trainIdx, nMatches and distance to vector with DMatch.
- static void radiusMatchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, const Mat& nMatches,
- std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
-
- // Find best matches from train collection for each query descriptor which have distance less than
- // maxDistance (in increasing order of distances).
- void radiusMatch(const GpuMat& query, std::vector< std::vector<DMatch> >& matches, float maxDistance,
- const std::vector<GpuMat>& masks = std::vector<GpuMat>(), bool compactResult = false);
-
- DistType distType;
-
-private:
- std::vector<GpuMat> trainDescCollection;
-};
-
-template <class Distance>
-class CV_EXPORTS BruteForceMatcher_GPU;
-
-template <typename T>
-class CV_EXPORTS BruteForceMatcher_GPU< L1<T> > : public BruteForceMatcher_GPU_base
-{
-public:
- explicit BruteForceMatcher_GPU() : BruteForceMatcher_GPU_base(L1Dist) {}
- explicit BruteForceMatcher_GPU(L1<T> /*d*/) : BruteForceMatcher_GPU_base(L1Dist) {}
-};
-template <typename T>
-class CV_EXPORTS BruteForceMatcher_GPU< L2<T> > : public BruteForceMatcher_GPU_base
-{
-public:
- explicit BruteForceMatcher_GPU() : BruteForceMatcher_GPU_base(L2Dist) {}
- explicit BruteForceMatcher_GPU(L2<T> /*d*/) : BruteForceMatcher_GPU_base(L2Dist) {}
-};
-template <> class CV_EXPORTS BruteForceMatcher_GPU< Hamming > : public BruteForceMatcher_GPU_base
-{
-public:
- explicit BruteForceMatcher_GPU() : BruteForceMatcher_GPU_base(HammingDist) {}
- explicit BruteForceMatcher_GPU(Hamming /*d*/) : BruteForceMatcher_GPU_base(HammingDist) {}
-};
-
-class CV_EXPORTS BFMatcher_GPU : public BruteForceMatcher_GPU_base
-{
-public:
- explicit BFMatcher_GPU(int norm = NORM_L2) : BruteForceMatcher_GPU_base(norm == NORM_L1 ? L1Dist : norm == NORM_L2 ? L2Dist : HammingDist) {}
-};
-
-////////////////////////////////// CascadeClassifier_GPU //////////////////////////////////////////
-// The cascade classifier class for object detection: supports old haar and new lbp xlm formats and nvbin for haar cascades olny.
-class CV_EXPORTS CascadeClassifier_GPU
-{
-public:
- CascadeClassifier_GPU();
- CascadeClassifier_GPU(const std::string& filename);
- ~CascadeClassifier_GPU();
-
- bool empty() const;
- bool load(const std::string& filename);
- void release();
-
- /* returns number of detected objects */
- int detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, double scaleFactor = 1.2, int minNeighbors = 4, Size minSize = Size());
- int detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, Size maxObjectSize, Size minSize = Size(), double scaleFactor = 1.1, int minNeighbors = 4);
-
- bool findLargestObject;
- bool visualizeInPlace;
-
- Size getClassifierSize() const;
-
-private:
- struct CascadeClassifierImpl;
- CascadeClassifierImpl* impl;
- struct HaarCascade;
- struct LbpCascade;
- friend class CascadeClassifier_GPU_LBP;
-};
-
-////////////////////////////////// FAST //////////////////////////////////////////
-
-class CV_EXPORTS FAST_GPU
-{
-public:
- enum
- {
- LOCATION_ROW = 0,
- RESPONSE_ROW,
- ROWS_COUNT
- };
-
- // all features have same size
- static const int FEATURE_SIZE = 7;
-
- explicit FAST_GPU(int threshold, bool nonmaxSuppression = true, double keypointsRatio = 0.05);
-
- //! finds the keypoints using FAST detector
- //! supports only CV_8UC1 images
- void operator ()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints);
- void operator ()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints);
-
- //! download keypoints from device to host memory
- void downloadKeypoints(const GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints);
-
- //! convert keypoints to KeyPoint vector
- void convertKeypoints(const Mat& h_keypoints, std::vector<KeyPoint>& keypoints);
-
- //! release temporary buffer's memory
- void release();
-
- bool nonmaxSuppression;
-
- int threshold;
-
- //! max keypoints = keypointsRatio * img.size().area()
- double keypointsRatio;
-
- //! find keypoints and compute it's response if nonmaxSuppression is true
- //! return count of detected keypoints
- int calcKeyPointsLocation(const GpuMat& image, const GpuMat& mask);
-
- //! get final array of keypoints
- //! performs nonmax suppression if needed
- //! return final count of keypoints
- int getKeyPoints(GpuMat& keypoints);
-
-private:
- GpuMat kpLoc_;
- int count_;
-
- GpuMat score_;
-
- GpuMat d_keypoints_;
-};
-
-////////////////////////////////// ORB //////////////////////////////////////////
-
-class CV_EXPORTS ORB_GPU
-{
-public:
- enum
- {
- X_ROW = 0,
- Y_ROW,
- RESPONSE_ROW,
- ANGLE_ROW,
- OCTAVE_ROW,
- SIZE_ROW,
- ROWS_COUNT
- };
-
- enum
- {
- DEFAULT_FAST_THRESHOLD = 20
- };
-
- //! Constructor
- explicit ORB_GPU(int nFeatures = 500, float scaleFactor = 1.2f, int nLevels = 8, int edgeThreshold = 31,
- int firstLevel = 0, int WTA_K = 2, int scoreType = 0, int patchSize = 31);
-
- //! Compute the ORB features on an image
- //! image - the image to compute the features (supports only CV_8UC1 images)
- //! mask - the mask to apply
- //! keypoints - the resulting keypoints
- void operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints);
- void operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints);
-
- //! Compute the ORB features and descriptors on an image
- //! image - the image to compute the features (supports only CV_8UC1 images)
- //! mask - the mask to apply
- //! keypoints - the resulting keypoints
- //! descriptors - descriptors array
- void operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints, GpuMat& descriptors);
- void operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints, GpuMat& descriptors);
-
- //! download keypoints from device to host memory
- void downloadKeyPoints(GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints);
-
- //! convert keypoints to KeyPoint vector
- void convertKeyPoints(Mat& d_keypoints, std::vector<KeyPoint>& keypoints);
-
- //! returns the descriptor size in bytes
- inline int descriptorSize() const { return kBytes; }
-
- inline void setFastParams(int threshold, bool nonmaxSuppression = true)
- {
- fastDetector_.threshold = threshold;
- fastDetector_.nonmaxSuppression = nonmaxSuppression;
- }
-
- //! release temporary buffer's memory
- void release();
-
- //! if true, image will be blurred before descriptors calculation
- bool blurForDescriptor;
-
-private:
- enum { kBytes = 32 };
-
- void buildScalePyramids(const GpuMat& image, const GpuMat& mask);
-
- void computeKeyPointsPyramid();
-
- void computeDescriptors(GpuMat& descriptors);
-
- void mergeKeyPoints(GpuMat& keypoints);
-
- int nFeatures_;
- float scaleFactor_;
- int nLevels_;
- int edgeThreshold_;
- int firstLevel_;
- int WTA_K_;
- int scoreType_;
- int patchSize_;
-
- // The number of desired features per scale
- std::vector<size_t> n_features_per_level_;
-
- // Points to compute BRIEF descriptors from
- GpuMat pattern_;
-
- std::vector<GpuMat> imagePyr_;
- std::vector<GpuMat> maskPyr_;
-
- GpuMat buf_;
-
- std::vector<GpuMat> keyPointsPyr_;
- std::vector<int> keyPointsCount_;
-
- FAST_GPU fastDetector_;
-
- Ptr<FilterEngine_GPU> blurFilter;
-
- GpuMat d_keypoints_;
-};
-
-////////////////////////////////// Optical Flow //////////////////////////////////////////
-
-class CV_EXPORTS BroxOpticalFlow
-{
-public:
- BroxOpticalFlow(float alpha_, float gamma_, float scale_factor_, int inner_iterations_, int outer_iterations_, int solver_iterations_) :
- alpha(alpha_), gamma(gamma_), scale_factor(scale_factor_),
- inner_iterations(inner_iterations_), outer_iterations(outer_iterations_), solver_iterations(solver_iterations_)
- {
- }
-
- //! Compute optical flow
- //! frame0 - source frame (supports only CV_32FC1 type)
- //! frame1 - frame to track (with the same size and type as frame0)
- //! u - flow horizontal component (along x axis)
- //! v - flow vertical component (along y axis)
- void operator ()(const GpuMat& frame0, const GpuMat& frame1, GpuMat& u, GpuMat& v, Stream& stream = Stream::Null());
-
- //! flow smoothness
- float alpha;
-
- //! gradient constancy importance
- float gamma;
-
- //! pyramid scale factor
- float scale_factor;
-
- //! number of lagged non-linearity iterations (inner loop)
- int inner_iterations;
-
- //! number of warping iterations (number of pyramid levels)
- int outer_iterations;
-
- //! number of linear system solver iterations
- int solver_iterations;
-
- GpuMat buf;
-};
-
-class CV_EXPORTS GoodFeaturesToTrackDetector_GPU
-{
-public:
- explicit GoodFeaturesToTrackDetector_GPU(int maxCorners = 1000, double qualityLevel = 0.01, double minDistance = 0.0,
- int blockSize = 3, bool useHarrisDetector = false, double harrisK = 0.04);
-
- //! return 1 rows matrix with CV_32FC2 type
- void operator ()(const GpuMat& image, GpuMat& corners, const GpuMat& mask = GpuMat());
-
- int maxCorners;
- double qualityLevel;
- double minDistance;
-
- int blockSize;
- bool useHarrisDetector;
- double harrisK;
-
- void releaseMemory()
- {
- Dx_.release();
- Dy_.release();
- buf_.release();
- eig_.release();
- minMaxbuf_.release();
- tmpCorners_.release();
- }
-
-private:
- GpuMat Dx_;
- GpuMat Dy_;
- GpuMat buf_;
- GpuMat eig_;
- GpuMat minMaxbuf_;
- GpuMat tmpCorners_;
-};
-
-inline GoodFeaturesToTrackDetector_GPU::GoodFeaturesToTrackDetector_GPU(int maxCorners_, double qualityLevel_, double minDistance_,
- int blockSize_, bool useHarrisDetector_, double harrisK_)
-{
- maxCorners = maxCorners_;
- qualityLevel = qualityLevel_;
- minDistance = minDistance_;
- blockSize = blockSize_;
- useHarrisDetector = useHarrisDetector_;
- harrisK = harrisK_;
-}
-
-
-class CV_EXPORTS PyrLKOpticalFlow
-{
-public:
- PyrLKOpticalFlow();
-
- void sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts,
- GpuMat& status, GpuMat* err = 0);
-
- void dense(const GpuMat& prevImg, const GpuMat& nextImg, GpuMat& u, GpuMat& v, GpuMat* err = 0);
-
- void releaseMemory();
-
- Size winSize;
- int maxLevel;
- int iters;
- double derivLambda; //unused
- bool useInitialFlow;
- float minEigThreshold; //unused
- bool getMinEigenVals; //unused
-
-private:
- GpuMat uPyr_[2];
- vector<GpuMat> prevPyr_;
- vector<GpuMat> nextPyr_;
- GpuMat vPyr_[2];
- vector<GpuMat> buf_;
- vector<GpuMat> unused;
- bool isDeviceArch11_;
-};
-
-
-class CV_EXPORTS FarnebackOpticalFlow
-{
-public:
- FarnebackOpticalFlow()
- {
- numLevels = 5;
- pyrScale = 0.5;
- fastPyramids = false;
- winSize = 13;
- numIters = 10;
- polyN = 5;
- polySigma = 1.1;
- flags = 0;
- isDeviceArch11_ = !DeviceInfo().supports(FEATURE_SET_COMPUTE_12);
- }
-
- int numLevels;
- double pyrScale;
- bool fastPyramids;
- int winSize;
- int numIters;
- int polyN;
- double polySigma;
- int flags;
-
- void operator ()(const GpuMat &frame0, const GpuMat &frame1, GpuMat &flowx, GpuMat &flowy, Stream &s = Stream::Null());
-
- void releaseMemory()
- {
- frames_[0].release();
- frames_[1].release();
- pyrLevel_[0].release();
- pyrLevel_[1].release();
- M_.release();
- bufM_.release();
- R_[0].release();
- R_[1].release();
- blurredFrame_[0].release();
- blurredFrame_[1].release();
- pyramid0_.clear();
- pyramid1_.clear();
- }
-
-private:
- void prepareGaussian(
- int n, double sigma, float *g, float *xg, float *xxg,
- double &ig11, double &ig03, double &ig33, double &ig55);
-
- void setPolynomialExpansionConsts(int n, double sigma);
-
- void updateFlow_boxFilter(
- const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat &flowy,
- GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[]);
-
- void updateFlow_gaussianBlur(
- const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat& flowy,
- GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[]);
-
- GpuMat frames_[2];
- GpuMat pyrLevel_[2], M_, bufM_, R_[2], blurredFrame_[2];
- std::vector<GpuMat> pyramid0_, pyramid1_;
-
- bool isDeviceArch11_;
-};
-
-
-// Implementation of the Zach, Pock and Bischof Dual TV-L1 Optical Flow method
-//
-// see reference:
-// [1] C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow".
-// [2] Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation".
-class CV_EXPORTS OpticalFlowDual_TVL1_GPU
-{
-public:
- OpticalFlowDual_TVL1_GPU();
-
- void operator ()(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy);
-
- void collectGarbage();
-
- /**
- * Time step of the numerical scheme.
- */
- double tau;
-
- /**
- * Weight parameter for the data term, attachment parameter.
- * This is the most relevant parameter, which determines the smoothness of the output.
- * The smaller this parameter is, the smoother the solutions we obtain.
- * It depends on the range of motions of the images, so its value should be adapted to each image sequence.
- */
- double lambda;
-
- /**
- * Weight parameter for (u - v)^2, tightness parameter.
- * It serves as a link between the attachment and the regularization terms.
- * In theory, it should have a small value in order to maintain both parts in correspondence.
- * The method is stable for a large range of values of this parameter.
- */
- double theta;
-
- /**
- * Number of scales used to create the pyramid of images.
- */
- int nscales;
-
- /**
- * Number of warpings per scale.
- * Represents the number of times that I1(x+u0) and grad( I1(x+u0) ) are computed per scale.
- * This is a parameter that assures the stability of the method.
- * It also affects the running time, so it is a compromise between speed and accuracy.
- */
- int warps;
-
- /**
- * Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time.
- * A small value will yield more accurate solutions at the expense of a slower convergence.
- */
- double epsilon;
-
- /**
- * Stopping criterion iterations number used in the numerical scheme.
- */
- int iterations;
-
- bool useInitialFlow;
-
-private:
- void procOneScale(const GpuMat& I0, const GpuMat& I1, GpuMat& u1, GpuMat& u2);
-
- std::vector<GpuMat> I0s;
- std::vector<GpuMat> I1s;
- std::vector<GpuMat> u1s;
- std::vector<GpuMat> u2s;
-
- GpuMat I1x_buf;
- GpuMat I1y_buf;
-
- GpuMat I1w_buf;
- GpuMat I1wx_buf;
- GpuMat I1wy_buf;
-
- GpuMat grad_buf;
- GpuMat rho_c_buf;
-
- GpuMat p11_buf;
- GpuMat p12_buf;
- GpuMat p21_buf;
- GpuMat p22_buf;
-
- GpuMat diff_buf;
- GpuMat norm_buf;
-};
-
-
-//! Calculates optical flow for 2 images using block matching algorithm */
-CV_EXPORTS void calcOpticalFlowBM(const GpuMat& prev, const GpuMat& curr,
- Size block_size, Size shift_size, Size max_range, bool use_previous,
- GpuMat& velx, GpuMat& vely, GpuMat& buf,
- Stream& stream = Stream::Null());
-
-class CV_EXPORTS FastOpticalFlowBM
-{
-public:
- void operator ()(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy, int search_window = 21, int block_window = 7, Stream& s = Stream::Null());
-
-private:
- GpuMat buffer;
- GpuMat extended_I0;
- GpuMat extended_I1;
-};
-
-
-//! Interpolate frames (images) using provided optical flow (displacement field).
-//! frame0 - frame 0 (32-bit floating point images, single channel)
-//! frame1 - frame 1 (the same type and size)
-//! fu - forward horizontal displacement
-//! fv - forward vertical displacement
-//! bu - backward horizontal displacement
-//! bv - backward vertical displacement
-//! pos - new frame position
-//! newFrame - new frame
-//! buf - temporary buffer, will have width x 6*height size, CV_32FC1 type and contain 6 GpuMat;
-//! occlusion masks 0, occlusion masks 1,
-//! interpolated forward flow 0, interpolated forward flow 1,
-//! interpolated backward flow 0, interpolated backward flow 1
-//!
-CV_EXPORTS void interpolateFrames(const GpuMat& frame0, const GpuMat& frame1,
- const GpuMat& fu, const GpuMat& fv,
- const GpuMat& bu, const GpuMat& bv,
- float pos, GpuMat& newFrame, GpuMat& buf,
- Stream& stream = Stream::Null());
-
-CV_EXPORTS void createOpticalFlowNeedleMap(const GpuMat& u, const GpuMat& v, GpuMat& vertex, GpuMat& colors);
-
-
-//////////////////////// Background/foreground segmentation ////////////////////////
-
-// Foreground Object Detection from Videos Containing Complex Background.
-// Liyuan Li, Weimin Huang, Irene Y.H. Gu, and Qi Tian.
-// ACM MM2003 9p
-class CV_EXPORTS FGDStatModel
-{
-public:
- struct CV_EXPORTS Params
- {
- int Lc; // Quantized levels per 'color' component. Power of two, typically 32, 64 or 128.
- int N1c; // Number of color vectors used to model normal background color variation at a given pixel.
- int N2c; // Number of color vectors retained at given pixel. Must be > N1c, typically ~ 5/3 of N1c.
- // Used to allow the first N1c vectors to adapt over time to changing background.
-
- int Lcc; // Quantized levels per 'color co-occurrence' component. Power of two, typically 16, 32 or 64.
- int N1cc; // Number of color co-occurrence vectors used to model normal background color variation at a given pixel.
- int N2cc; // Number of color co-occurrence vectors retained at given pixel. Must be > N1cc, typically ~ 5/3 of N1cc.
- // Used to allow the first N1cc vectors to adapt over time to changing background.
-
- bool is_obj_without_holes; // If TRUE we ignore holes within foreground blobs. Defaults to TRUE.
- int perform_morphing; // Number of erode-dilate-erode foreground-blob cleanup iterations.
- // These erase one-pixel junk blobs and merge almost-touching blobs. Default value is 1.
-
- float alpha1; // How quickly we forget old background pixel values seen. Typically set to 0.1.
- float alpha2; // "Controls speed of feature learning". Depends on T. Typical value circa 0.005.
- float alpha3; // Alternate to alpha2, used (e.g.) for quicker initial convergence. Typical value 0.1.
-
- float delta; // Affects color and color co-occurrence quantization, typically set to 2.
- float T; // A percentage value which determines when new features can be recognized as new background. (Typically 0.9).
- float minArea; // Discard foreground blobs whose bounding box is smaller than this threshold.
-
- // default Params
- Params();
- };
-
- // out_cn - channels count in output result (can be 3 or 4)
- // 4-channels require more memory, but a bit faster
- explicit FGDStatModel(int out_cn = 3);
- explicit FGDStatModel(const cv::gpu::GpuMat& firstFrame, const Params& params = Params(), int out_cn = 3);
-
- ~FGDStatModel();
-
- void create(const cv::gpu::GpuMat& firstFrame, const Params& params = Params());
- void release();
-
- int update(const cv::gpu::GpuMat& curFrame);
-
- //8UC3 or 8UC4 reference background image
- cv::gpu::GpuMat background;
-
- //8UC1 foreground image
- cv::gpu::GpuMat foreground;
-
- std::vector< std::vector<cv::Point> > foreground_regions;
-
-private:
- FGDStatModel(const FGDStatModel&);
- FGDStatModel& operator=(const FGDStatModel&);
-
- class Impl;
- std::auto_ptr<Impl> impl_;
-};
-
-/*!
- Gaussian Mixture-based Backbround/Foreground Segmentation Algorithm
-
- The class implements the following algorithm:
- "An improved adaptive background mixture model for real-time tracking with shadow detection"
- P. KadewTraKuPong and R. Bowden,
- Proc. 2nd European Workshp on Advanced Video-Based Surveillance Systems, 2001."
- http://personal.ee.surrey.ac.uk/Personal/R.Bowden/publications/avbs01/avbs01.pdf
-*/
-class CV_EXPORTS MOG_GPU
-{
-public:
- //! the default constructor
- MOG_GPU(int nmixtures = -1);
-
- //! re-initiaization method
- void initialize(Size frameSize, int frameType);
-
- //! the update operator
- void operator()(const GpuMat& frame, GpuMat& fgmask, float learningRate = 0.0f, Stream& stream = Stream::Null());
-
- //! computes a background image which are the mean of all background gaussians
- void getBackgroundImage(GpuMat& backgroundImage, Stream& stream = Stream::Null()) const;
-
- //! releases all inner buffers
- void release();
-
- int history;
- float varThreshold;
- float backgroundRatio;
- float noiseSigma;
-
-private:
- int nmixtures_;
-
- Size frameSize_;
- int frameType_;
- int nframes_;
-
- GpuMat weight_;
- GpuMat sortKey_;
- GpuMat mean_;
- GpuMat var_;
-};
-
-/*!
- The class implements the following algorithm:
- "Improved adaptive Gausian mixture model for background subtraction"
- Z.Zivkovic
- International Conference Pattern Recognition, UK, August, 2004.
- http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf
-*/
-class CV_EXPORTS MOG2_GPU
-{
-public:
- //! the default constructor
- MOG2_GPU(int nmixtures = -1);
-
- //! re-initiaization method
- void initialize(Size frameSize, int frameType);
-
- //! the update operator
- void operator()(const GpuMat& frame, GpuMat& fgmask, float learningRate = -1.0f, Stream& stream = Stream::Null());
-
- //! computes a background image which are the mean of all background gaussians
- void getBackgroundImage(GpuMat& backgroundImage, Stream& stream = Stream::Null()) const;
-
- //! releases all inner buffers
- void release();
-
- // parameters
- // you should call initialize after parameters changes
-
- int history;
-
- //! here it is the maximum allowed number of mixture components.
- //! Actual number is determined dynamically per pixel
- float varThreshold;
- // threshold on the squared Mahalanobis distance to decide if it is well described
- // by the background model or not. Related to Cthr from the paper.
- // This does not influence the update of the background. A typical value could be 4 sigma
- // and that is varThreshold=4*4=16; Corresponds to Tb in the paper.
-
- /////////////////////////
- // less important parameters - things you might change but be carefull
- ////////////////////////
-
- float backgroundRatio;
- // corresponds to fTB=1-cf from the paper
- // TB - threshold when the component becomes significant enough to be included into
- // the background model. It is the TB=1-cf from the paper. So I use cf=0.1 => TB=0.
- // For alpha=0.001 it means that the mode should exist for approximately 105 frames before
- // it is considered foreground
- // float noiseSigma;
- float varThresholdGen;
-
- //correspondts to Tg - threshold on the squared Mahalan. dist. to decide
- //when a sample is close to the existing components. If it is not close
- //to any a new component will be generated. I use 3 sigma => Tg=3*3=9.
- //Smaller Tg leads to more generated components and higher Tg might make
- //lead to small number of components but they can grow too large
- float fVarInit;
- float fVarMin;
- float fVarMax;
-
- //initial variance for the newly generated components.
- //It will will influence the speed of adaptation. A good guess should be made.
- //A simple way is to estimate the typical standard deviation from the images.
- //I used here 10 as a reasonable value
- // min and max can be used to further control the variance
- float fCT; //CT - complexity reduction prior
- //this is related to the number of samples needed to accept that a component
- //actually exists. We use CT=0.05 of all the samples. By setting CT=0 you get
- //the standard Stauffer&Grimson algorithm (maybe not exact but very similar)
-
- //shadow detection parameters
- bool bShadowDetection; //default 1 - do shadow detection
- unsigned char nShadowDetection; //do shadow detection - insert this value as the detection result - 127 default value
- float fTau;
- // Tau - shadow threshold. The shadow is detected if the pixel is darker
- //version of the background. Tau is a threshold on how much darker the shadow can be.
- //Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow
- //See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.
-
-private:
- int nmixtures_;
-
- Size frameSize_;
- int frameType_;
- int nframes_;
-
- GpuMat weight_;
- GpuMat variance_;
- GpuMat mean_;
-
- GpuMat bgmodelUsedModes_; //keep track of number of modes per pixel
-};
-
-/**
- * Background Subtractor module. Takes a series of images and returns a sequence of mask (8UC1)
- * images of the same size, where 255 indicates Foreground and 0 represents Background.
- * This class implements an algorithm described in "Visual Tracking of Human Visitors under
- * Variable-Lighting Conditions for a Responsive Audio Art Installation," A. Godbehere,
- * A. Matsukawa, K. Goldberg, American Control Conference, Montreal, June 2012.
- */
-class CV_EXPORTS GMG_GPU
-{
-public:
- GMG_GPU();
-
- /**
- * Validate parameters and set up data structures for appropriate frame size.
- * @param frameSize Input frame size
- * @param min Minimum value taken on by pixels in image sequence. Usually 0
- * @param max Maximum value taken on by pixels in image sequence. e.g. 1.0 or 255
- */
- void initialize(Size frameSize, float min = 0.0f, float max = 255.0f);
-
- /**
- * Performs single-frame background subtraction and builds up a statistical background image
- * model.
- * @param frame Input frame
- * @param fgmask Output mask image representing foreground and background pixels
- * @param learningRate determines how quickly features are “forgotten” from histograms
- * @param stream Stream for the asynchronous version
- */
- void operator ()(const GpuMat& frame, GpuMat& fgmask, float learningRate = -1.0f, Stream& stream = Stream::Null());
-
- //! Releases all inner buffers
- void release();
-
- //! Total number of distinct colors to maintain in histogram.
- int maxFeatures;
-
- //! Set between 0.0 and 1.0, determines how quickly features are "forgotten" from histograms.
- float learningRate;
-
- //! Number of frames of video to use to initialize histograms.
- int numInitializationFrames;
-
- //! Number of discrete levels in each channel to be used in histograms.
- int quantizationLevels;
-
- //! Prior probability that any given pixel is a background pixel. A sensitivity parameter.
- float backgroundPrior;
-
- //! Value above which pixel is determined to be FG.
- float decisionThreshold;
-
- //! Smoothing radius, in pixels, for cleaning up FG image.
- int smoothingRadius;
-
- //! Perform background model update.
- bool updateBackgroundModel;
-
-private:
- float maxVal_, minVal_;
-
- Size frameSize_;
-
- int frameNum_;
-
- GpuMat nfeatures_;
- GpuMat colors_;
- GpuMat weights_;
-
- Ptr<FilterEngine_GPU> boxFilter_;
- GpuMat buf_;
-};
-
-////////////////////////////////// Video Encoding //////////////////////////////////
-
-// Works only under Windows
-// Supports olny H264 video codec and AVI files
-class CV_EXPORTS VideoWriter_GPU
-{
-public:
- struct EncoderParams;
-
- // Callbacks for video encoder, use it if you want to work with raw video stream
- class EncoderCallBack;
-
- enum SurfaceFormat
- {
- SF_UYVY = 0,
- SF_YUY2,
- SF_YV12,
- SF_NV12,
- SF_IYUV,
- SF_BGR,
- SF_GRAY = SF_BGR
- };
-
- VideoWriter_GPU();
- VideoWriter_GPU(const std::string& fileName, cv::Size frameSize, double fps, SurfaceFormat format = SF_BGR);
- VideoWriter_GPU(const std::string& fileName, cv::Size frameSize, double fps, const EncoderParams& params, SurfaceFormat format = SF_BGR);
- VideoWriter_GPU(const cv::Ptr<EncoderCallBack>& encoderCallback, cv::Size frameSize, double fps, SurfaceFormat format = SF_BGR);
- VideoWriter_GPU(const cv::Ptr<EncoderCallBack>& encoderCallback, cv::Size frameSize, double fps, const EncoderParams& params, SurfaceFormat format = SF_BGR);
- ~VideoWriter_GPU();
-
- // all methods throws cv::Exception if error occurs
- void open(const std::string& fileName, cv::Size frameSize, double fps, SurfaceFormat format = SF_BGR);
- void open(const std::string& fileName, cv::Size frameSize, double fps, const EncoderParams& params, SurfaceFormat format = SF_BGR);
- void open(const cv::Ptr<EncoderCallBack>& encoderCallback, cv::Size frameSize, double fps, SurfaceFormat format = SF_BGR);
- void open(const cv::Ptr<EncoderCallBack>& encoderCallback, cv::Size frameSize, double fps, const EncoderParams& params, SurfaceFormat format = SF_BGR);
-
- bool isOpened() const;
- void close();
-
- void write(const cv::gpu::GpuMat& image, bool lastFrame = false);
-
- struct CV_EXPORTS EncoderParams
- {
- int P_Interval; // NVVE_P_INTERVAL,
- int IDR_Period; // NVVE_IDR_PERIOD,
- int DynamicGOP; // NVVE_DYNAMIC_GOP,
- int RCType; // NVVE_RC_TYPE,
- int AvgBitrate; // NVVE_AVG_BITRATE,
- int PeakBitrate; // NVVE_PEAK_BITRATE,
- int QP_Level_Intra; // NVVE_QP_LEVEL_INTRA,
- int QP_Level_InterP; // NVVE_QP_LEVEL_INTER_P,
- int QP_Level_InterB; // NVVE_QP_LEVEL_INTER_B,
- int DeblockMode; // NVVE_DEBLOCK_MODE,
- int ProfileLevel; // NVVE_PROFILE_LEVEL,
- int ForceIntra; // NVVE_FORCE_INTRA,
- int ForceIDR; // NVVE_FORCE_IDR,
- int ClearStat; // NVVE_CLEAR_STAT,
- int DIMode; // NVVE_SET_DEINTERLACE,
- int Presets; // NVVE_PRESETS,
- int DisableCabac; // NVVE_DISABLE_CABAC,
- int NaluFramingType; // NVVE_CONFIGURE_NALU_FRAMING_TYPE
- int DisableSPSPPS; // NVVE_DISABLE_SPS_PPS
-
- EncoderParams();
- explicit EncoderParams(const std::string& configFile);
-
- void load(const std::string& configFile);
- void save(const std::string& configFile) const;
- };
-
- EncoderParams getParams() const;
-
- class CV_EXPORTS EncoderCallBack
- {
- public:
- enum PicType
- {
- IFRAME = 1,
- PFRAME = 2,
- BFRAME = 3
- };
-
- virtual ~EncoderCallBack() {}
-
- // callback function to signal the start of bitstream that is to be encoded
- // must return pointer to buffer
- virtual uchar* acquireBitStream(int* bufferSize) = 0;
-
- // callback function to signal that the encoded bitstream is ready to be written to file
- virtual void releaseBitStream(unsigned char* data, int size) = 0;
-
- // callback function to signal that the encoding operation on the frame has started
- virtual void onBeginFrame(int frameNumber, PicType picType) = 0;
-
- // callback function signals that the encoding operation on the frame has finished
- virtual void onEndFrame(int frameNumber, PicType picType) = 0;
- };
-
-private:
- VideoWriter_GPU(const VideoWriter_GPU&);
- VideoWriter_GPU& operator=(const VideoWriter_GPU&);
-
- class Impl;
- std::auto_ptr<Impl> impl_;
-};
-
-
-////////////////////////////////// Video Decoding //////////////////////////////////////////
-
-namespace detail
-{
- class FrameQueue;
- class VideoParser;
-}
-
-class CV_EXPORTS VideoReader_GPU
-{
-public:
- enum Codec
- {
- MPEG1 = 0,
- MPEG2,
- MPEG4,
- VC1,
- H264,
- JPEG,
- H264_SVC,
- H264_MVC,
-
- Uncompressed_YUV420 = (('I'<<24)|('Y'<<16)|('U'<<8)|('V')), // Y,U,V (4:2:0)
- Uncompressed_YV12 = (('Y'<<24)|('V'<<16)|('1'<<8)|('2')), // Y,V,U (4:2:0)
- Uncompressed_NV12 = (('N'<<24)|('V'<<16)|('1'<<8)|('2')), // Y,UV (4:2:0)
- Uncompressed_YUYV = (('Y'<<24)|('U'<<16)|('Y'<<8)|('V')), // YUYV/YUY2 (4:2:2)
- Uncompressed_UYVY = (('U'<<24)|('Y'<<16)|('V'<<8)|('Y')) // UYVY (4:2:2)
- };
-
- enum ChromaFormat
- {
- Monochrome=0,
- YUV420,
- YUV422,
- YUV444
- };
-
- struct FormatInfo
- {
- Codec codec;
- ChromaFormat chromaFormat;
- int width;
- int height;
- };
-
- class VideoSource;
-
- VideoReader_GPU();
- explicit VideoReader_GPU(const std::string& filename);
- explicit VideoReader_GPU(const cv::Ptr<VideoSource>& source);
-
- ~VideoReader_GPU();
-
- void open(const std::string& filename);
- void open(const cv::Ptr<VideoSource>& source);
- bool isOpened() const;
-
- void close();
-
- bool read(GpuMat& image);
-
- FormatInfo format() const;
- void dumpFormat(std::ostream& st);
-
- class CV_EXPORTS VideoSource
- {
- public:
- VideoSource() : frameQueue_(0), videoParser_(0) {}
- virtual ~VideoSource() {}
-
- virtual FormatInfo format() const = 0;
- virtual void start() = 0;
- virtual void stop() = 0;
- virtual bool isStarted() const = 0;
- virtual bool hasError() const = 0;
-
- void setFrameQueue(detail::FrameQueue* frameQueue) { frameQueue_ = frameQueue; }
- void setVideoParser(detail::VideoParser* videoParser) { videoParser_ = videoParser; }
-
- protected:
- bool parseVideoData(const uchar* data, size_t size, bool endOfStream = false);
-
- private:
- VideoSource(const VideoSource&);
- VideoSource& operator =(const VideoSource&);
-
- detail::FrameQueue* frameQueue_;
- detail::VideoParser* videoParser_;
- };
-
-private:
- VideoReader_GPU(const VideoReader_GPU&);
- VideoReader_GPU& operator =(const VideoReader_GPU&);
-
- class Impl;
- std::auto_ptr<Impl> impl_;
-};
-
-//! removes points (CV_32FC2, single row matrix) with zero mask value
-CV_EXPORTS void compactPoints(GpuMat &points0, GpuMat &points1, const GpuMat &mask);
-
-CV_EXPORTS void calcWobbleSuppressionMaps(
- int left, int idx, int right, Size size, const Mat &ml, const Mat &mr,
- GpuMat &mapx, GpuMat &mapy);
-
-} // namespace gpu
-
-} // namespace cv
-
-#endif /* __OPENCV_GPU_HPP__ */