summaryrefslogtreecommitdiff
path: root/thirdparty/includes/OpenCV/opencv2/imgproc/imgproc.hpp
diff options
context:
space:
mode:
authoryash11122017-07-07 21:20:49 +0530
committeryash11122017-07-07 21:20:49 +0530
commit3f52712f806fbd80d66dfdcaff401e5cf94dcca4 (patch)
treea8333b8187cb44b505b9fe37fc9a7ac8a1711c10 /thirdparty/includes/OpenCV/opencv2/imgproc/imgproc.hpp
downloadScilab2C_fossee_old-3f52712f806fbd80d66dfdcaff401e5cf94dcca4.tar.gz
Scilab2C_fossee_old-3f52712f806fbd80d66dfdcaff401e5cf94dcca4.tar.bz2
Scilab2C_fossee_old-3f52712f806fbd80d66dfdcaff401e5cf94dcca4.zip
sci2c arduino updated
Diffstat (limited to 'thirdparty/includes/OpenCV/opencv2/imgproc/imgproc.hpp')
-rw-r--r--thirdparty/includes/OpenCV/opencv2/imgproc/imgproc.hpp1299
1 files changed, 1299 insertions, 0 deletions
diff --git a/thirdparty/includes/OpenCV/opencv2/imgproc/imgproc.hpp b/thirdparty/includes/OpenCV/opencv2/imgproc/imgproc.hpp
new file mode 100644
index 0000000..aa6a5f6
--- /dev/null
+++ b/thirdparty/includes/OpenCV/opencv2/imgproc/imgproc.hpp
@@ -0,0 +1,1299 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+// By downloading, copying, installing or using the software you agree to this license.
+// If you do not agree to this license, do not download, install,
+// copy or use the software.
+//
+//
+// License Agreement
+// For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+// * Redistribution's of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// * Redistribution's in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+//
+// * The name of the copyright holders may not be used to endorse or promote products
+// derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef __OPENCV_IMGPROC_HPP__
+#define __OPENCV_IMGPROC_HPP__
+
+#include "opencv2/core/core.hpp"
+#include "opencv2/imgproc/types_c.h"
+
+#ifdef __cplusplus
+
+/*! \namespace cv
+ Namespace where all the C++ OpenCV functionality resides
+ */
+namespace cv
+{
+
+//! various border interpolation methods
+enum { BORDER_REPLICATE=IPL_BORDER_REPLICATE, BORDER_CONSTANT=IPL_BORDER_CONSTANT,
+ BORDER_REFLECT=IPL_BORDER_REFLECT, BORDER_WRAP=IPL_BORDER_WRAP,
+ BORDER_REFLECT_101=IPL_BORDER_REFLECT_101, BORDER_REFLECT101=BORDER_REFLECT_101,
+ BORDER_TRANSPARENT=IPL_BORDER_TRANSPARENT,
+ BORDER_DEFAULT=BORDER_REFLECT_101, BORDER_ISOLATED=16 };
+
+//! 1D interpolation function: returns coordinate of the "donor" pixel for the specified location p.
+CV_EXPORTS_W int borderInterpolate( int p, int len, int borderType );
+
+/*!
+ The Base Class for 1D or Row-wise Filters
+
+ This is the base class for linear or non-linear filters that process 1D data.
+ In particular, such filters are used for the "horizontal" filtering parts in separable filters.
+
+ Several functions in OpenCV return Ptr<BaseRowFilter> for the specific types of filters,
+ and those pointers can be used directly or within cv::FilterEngine.
+*/
+class CV_EXPORTS BaseRowFilter
+{
+public:
+ //! the default constructor
+ BaseRowFilter();
+ //! the destructor
+ virtual ~BaseRowFilter();
+ //! the filtering operator. Must be overridden in the derived classes. The horizontal border interpolation is done outside of the class.
+ virtual void operator()(const uchar* src, uchar* dst,
+ int width, int cn) = 0;
+ int ksize, anchor;
+};
+
+
+/*!
+ The Base Class for Column-wise Filters
+
+ This is the base class for linear or non-linear filters that process columns of 2D arrays.
+ Such filters are used for the "vertical" filtering parts in separable filters.
+
+ Several functions in OpenCV return Ptr<BaseColumnFilter> for the specific types of filters,
+ and those pointers can be used directly or within cv::FilterEngine.
+
+ Unlike cv::BaseRowFilter, cv::BaseColumnFilter may have some context information,
+ i.e. box filter keeps the sliding sum of elements. To reset the state BaseColumnFilter::reset()
+ must be called (e.g. the method is called by cv::FilterEngine)
+ */
+class CV_EXPORTS BaseColumnFilter
+{
+public:
+ //! the default constructor
+ BaseColumnFilter();
+ //! the destructor
+ virtual ~BaseColumnFilter();
+ //! the filtering operator. Must be overridden in the derived classes. The vertical border interpolation is done outside of the class.
+ virtual void operator()(const uchar** src, uchar* dst, int dststep,
+ int dstcount, int width) = 0;
+ //! resets the internal buffers, if any
+ virtual void reset();
+ int ksize, anchor;
+};
+
+/*!
+ The Base Class for Non-Separable 2D Filters.
+
+ This is the base class for linear or non-linear 2D filters.
+
+ Several functions in OpenCV return Ptr<BaseFilter> for the specific types of filters,
+ and those pointers can be used directly or within cv::FilterEngine.
+
+ Similar to cv::BaseColumnFilter, the class may have some context information,
+ that should be reset using BaseFilter::reset() method before processing the new array.
+*/
+class CV_EXPORTS BaseFilter
+{
+public:
+ //! the default constructor
+ BaseFilter();
+ //! the destructor
+ virtual ~BaseFilter();
+ //! the filtering operator. The horizontal and the vertical border interpolation is done outside of the class.
+ virtual void operator()(const uchar** src, uchar* dst, int dststep,
+ int dstcount, int width, int cn) = 0;
+ //! resets the internal buffers, if any
+ virtual void reset();
+ Size ksize;
+ Point anchor;
+};
+
+/*!
+ The Main Class for Image Filtering.
+
+ The class can be used to apply an arbitrary filtering operation to an image.
+ It contains all the necessary intermediate buffers, it computes extrapolated values
+ of the "virtual" pixels outside of the image etc.
+ Pointers to the initialized cv::FilterEngine instances
+ are returned by various OpenCV functions, such as cv::createSeparableLinearFilter(),
+ cv::createLinearFilter(), cv::createGaussianFilter(), cv::createDerivFilter(),
+ cv::createBoxFilter() and cv::createMorphologyFilter().
+
+ Using the class you can process large images by parts and build complex pipelines
+ that include filtering as some of the stages. If all you need is to apply some pre-defined
+ filtering operation, you may use cv::filter2D(), cv::erode(), cv::dilate() etc.
+ functions that create FilterEngine internally.
+
+ Here is the example on how to use the class to implement Laplacian operator, which is the sum of
+ second-order derivatives. More complex variant for different types is implemented in cv::Laplacian().
+
+ \code
+ void laplace_f(const Mat& src, Mat& dst)
+ {
+ CV_Assert( src.type() == CV_32F );
+ // make sure the destination array has the proper size and type
+ dst.create(src.size(), src.type());
+
+ // get the derivative and smooth kernels for d2I/dx2.
+ // for d2I/dy2 we could use the same kernels, just swapped
+ Mat kd, ks;
+ getSobelKernels( kd, ks, 2, 0, ksize, false, ktype );
+
+ // let's process 10 source rows at once
+ int DELTA = std::min(10, src.rows);
+ Ptr<FilterEngine> Fxx = createSeparableLinearFilter(src.type(),
+ dst.type(), kd, ks, Point(-1,-1), 0, borderType, borderType, Scalar() );
+ Ptr<FilterEngine> Fyy = createSeparableLinearFilter(src.type(),
+ dst.type(), ks, kd, Point(-1,-1), 0, borderType, borderType, Scalar() );
+
+ int y = Fxx->start(src), dsty = 0, dy = 0;
+ Fyy->start(src);
+ const uchar* sptr = src.data + y*src.step;
+
+ // allocate the buffers for the spatial image derivatives;
+ // the buffers need to have more than DELTA rows, because at the
+ // last iteration the output may take max(kd.rows-1,ks.rows-1)
+ // rows more than the input.
+ Mat Ixx( DELTA + kd.rows - 1, src.cols, dst.type() );
+ Mat Iyy( DELTA + kd.rows - 1, src.cols, dst.type() );
+
+ // inside the loop we always pass DELTA rows to the filter
+ // (note that the "proceed" method takes care of possibe overflow, since
+ // it was given the actual image height in the "start" method)
+ // on output we can get:
+ // * < DELTA rows (the initial buffer accumulation stage)
+ // * = DELTA rows (settled state in the middle)
+ // * > DELTA rows (then the input image is over, but we generate
+ // "virtual" rows using the border mode and filter them)
+ // this variable number of output rows is dy.
+ // dsty is the current output row.
+ // sptr is the pointer to the first input row in the portion to process
+ for( ; dsty < dst.rows; sptr += DELTA*src.step, dsty += dy )
+ {
+ Fxx->proceed( sptr, (int)src.step, DELTA, Ixx.data, (int)Ixx.step );
+ dy = Fyy->proceed( sptr, (int)src.step, DELTA, d2y.data, (int)Iyy.step );
+ if( dy > 0 )
+ {
+ Mat dstripe = dst.rowRange(dsty, dsty + dy);
+ add(Ixx.rowRange(0, dy), Iyy.rowRange(0, dy), dstripe);
+ }
+ }
+ }
+ \endcode
+*/
+class CV_EXPORTS FilterEngine
+{
+public:
+ //! the default constructor
+ FilterEngine();
+ //! the full constructor. Either _filter2D or both _rowFilter and _columnFilter must be non-empty.
+ FilterEngine(const Ptr<BaseFilter>& _filter2D,
+ const Ptr<BaseRowFilter>& _rowFilter,
+ const Ptr<BaseColumnFilter>& _columnFilter,
+ int srcType, int dstType, int bufType,
+ int _rowBorderType=BORDER_REPLICATE,
+ int _columnBorderType=-1,
+ const Scalar& _borderValue=Scalar());
+ //! the destructor
+ virtual ~FilterEngine();
+ //! reinitializes the engine. The previously assigned filters are released.
+ void init(const Ptr<BaseFilter>& _filter2D,
+ const Ptr<BaseRowFilter>& _rowFilter,
+ const Ptr<BaseColumnFilter>& _columnFilter,
+ int srcType, int dstType, int bufType,
+ int _rowBorderType=BORDER_REPLICATE, int _columnBorderType=-1,
+ const Scalar& _borderValue=Scalar());
+ //! starts filtering of the specified ROI of an image of size wholeSize.
+ virtual int start(Size wholeSize, Rect roi, int maxBufRows=-1);
+ //! starts filtering of the specified ROI of the specified image.
+ virtual int start(const Mat& src, const Rect& srcRoi=Rect(0,0,-1,-1),
+ bool isolated=false, int maxBufRows=-1);
+ //! processes the next srcCount rows of the image.
+ virtual int proceed(const uchar* src, int srcStep, int srcCount,
+ uchar* dst, int dstStep);
+ //! applies filter to the specified ROI of the image. if srcRoi=(0,0,-1,-1), the whole image is filtered.
+ virtual void apply( const Mat& src, Mat& dst,
+ const Rect& srcRoi=Rect(0,0,-1,-1),
+ Point dstOfs=Point(0,0),
+ bool isolated=false);
+ //! returns true if the filter is separable
+ bool isSeparable() const { return (const BaseFilter*)filter2D == 0; }
+ //! returns the number
+ int remainingInputRows() const;
+ int remainingOutputRows() const;
+
+ int srcType, dstType, bufType;
+ Size ksize;
+ Point anchor;
+ int maxWidth;
+ Size wholeSize;
+ Rect roi;
+ int dx1, dx2;
+ int rowBorderType, columnBorderType;
+ vector<int> borderTab;
+ int borderElemSize;
+ vector<uchar> ringBuf;
+ vector<uchar> srcRow;
+ vector<uchar> constBorderValue;
+ vector<uchar> constBorderRow;
+ int bufStep, startY, startY0, endY, rowCount, dstY;
+ vector<uchar*> rows;
+
+ Ptr<BaseFilter> filter2D;
+ Ptr<BaseRowFilter> rowFilter;
+ Ptr<BaseColumnFilter> columnFilter;
+};
+
+//! type of the kernel
+enum { KERNEL_GENERAL=0, KERNEL_SYMMETRICAL=1, KERNEL_ASYMMETRICAL=2,
+ KERNEL_SMOOTH=4, KERNEL_INTEGER=8 };
+
+//! returns type (one of KERNEL_*) of 1D or 2D kernel specified by its coefficients.
+CV_EXPORTS int getKernelType(InputArray kernel, Point anchor);
+
+//! returns the primitive row filter with the specified kernel
+CV_EXPORTS Ptr<BaseRowFilter> getLinearRowFilter(int srcType, int bufType,
+ InputArray kernel, int anchor,
+ int symmetryType);
+
+//! returns the primitive column filter with the specified kernel
+CV_EXPORTS Ptr<BaseColumnFilter> getLinearColumnFilter(int bufType, int dstType,
+ InputArray kernel, int anchor,
+ int symmetryType, double delta=0,
+ int bits=0);
+
+//! returns 2D filter with the specified kernel
+CV_EXPORTS Ptr<BaseFilter> getLinearFilter(int srcType, int dstType,
+ InputArray kernel,
+ Point anchor=Point(-1,-1),
+ double delta=0, int bits=0);
+
+//! returns the separable linear filter engine
+CV_EXPORTS Ptr<FilterEngine> createSeparableLinearFilter(int srcType, int dstType,
+ InputArray rowKernel, InputArray columnKernel,
+ Point anchor=Point(-1,-1), double delta=0,
+ int rowBorderType=BORDER_DEFAULT,
+ int columnBorderType=-1,
+ const Scalar& borderValue=Scalar());
+
+//! returns the non-separable linear filter engine
+CV_EXPORTS Ptr<FilterEngine> createLinearFilter(int srcType, int dstType,
+ InputArray kernel, Point _anchor=Point(-1,-1),
+ double delta=0, int rowBorderType=BORDER_DEFAULT,
+ int columnBorderType=-1, const Scalar& borderValue=Scalar());
+
+//! returns the Gaussian kernel with the specified parameters
+CV_EXPORTS_W Mat getGaussianKernel( int ksize, double sigma, int ktype=CV_64F );
+
+//! returns the Gaussian filter engine
+CV_EXPORTS Ptr<FilterEngine> createGaussianFilter( int type, Size ksize,
+ double sigma1, double sigma2=0,
+ int borderType=BORDER_DEFAULT);
+//! initializes kernels of the generalized Sobel operator
+CV_EXPORTS_W void getDerivKernels( OutputArray kx, OutputArray ky,
+ int dx, int dy, int ksize,
+ bool normalize=false, int ktype=CV_32F );
+//! returns filter engine for the generalized Sobel operator
+CV_EXPORTS Ptr<FilterEngine> createDerivFilter( int srcType, int dstType,
+ int dx, int dy, int ksize,
+ int borderType=BORDER_DEFAULT );
+//! returns horizontal 1D box filter
+CV_EXPORTS Ptr<BaseRowFilter> getRowSumFilter(int srcType, int sumType,
+ int ksize, int anchor=-1);
+//! returns vertical 1D box filter
+CV_EXPORTS Ptr<BaseColumnFilter> getColumnSumFilter( int sumType, int dstType,
+ int ksize, int anchor=-1,
+ double scale=1);
+//! returns box filter engine
+CV_EXPORTS Ptr<FilterEngine> createBoxFilter( int srcType, int dstType, Size ksize,
+ Point anchor=Point(-1,-1),
+ bool normalize=true,
+ int borderType=BORDER_DEFAULT);
+
+//! returns the Gabor kernel with the specified parameters
+CV_EXPORTS_W Mat getGaborKernel( Size ksize, double sigma, double theta, double lambd,
+ double gamma, double psi=CV_PI*0.5, int ktype=CV_64F );
+
+//! type of morphological operation
+enum { MORPH_ERODE=CV_MOP_ERODE, MORPH_DILATE=CV_MOP_DILATE,
+ MORPH_OPEN=CV_MOP_OPEN, MORPH_CLOSE=CV_MOP_CLOSE,
+ MORPH_GRADIENT=CV_MOP_GRADIENT, MORPH_TOPHAT=CV_MOP_TOPHAT,
+ MORPH_BLACKHAT=CV_MOP_BLACKHAT, MORPH_HITMISS };
+
+//! returns horizontal 1D morphological filter
+CV_EXPORTS Ptr<BaseRowFilter> getMorphologyRowFilter(int op, int type, int ksize, int anchor=-1);
+//! returns vertical 1D morphological filter
+CV_EXPORTS Ptr<BaseColumnFilter> getMorphologyColumnFilter(int op, int type, int ksize, int anchor=-1);
+//! returns 2D morphological filter
+CV_EXPORTS Ptr<BaseFilter> getMorphologyFilter(int op, int type, InputArray kernel,
+ Point anchor=Point(-1,-1));
+
+//! returns "magic" border value for erosion and dilation. It is automatically transformed to Scalar::all(-DBL_MAX) for dilation.
+static inline Scalar morphologyDefaultBorderValue() { return Scalar::all(DBL_MAX); }
+
+//! returns morphological filter engine. Only MORPH_ERODE and MORPH_DILATE are supported.
+CV_EXPORTS Ptr<FilterEngine> createMorphologyFilter(int op, int type, InputArray kernel,
+ Point anchor=Point(-1,-1), int rowBorderType=BORDER_CONSTANT,
+ int columnBorderType=-1,
+ const Scalar& borderValue=morphologyDefaultBorderValue());
+
+//! shape of the structuring element
+enum { MORPH_RECT=0, MORPH_CROSS=1, MORPH_ELLIPSE=2 };
+//! returns structuring element of the specified shape and size
+CV_EXPORTS_W Mat getStructuringElement(int shape, Size ksize, Point anchor=Point(-1,-1));
+
+template<> CV_EXPORTS void Ptr<IplConvKernel>::delete_obj();
+
+//! copies 2D array to a larger destination array with extrapolation of the outer part of src using the specified border mode
+CV_EXPORTS_W void copyMakeBorder( InputArray src, OutputArray dst,
+ int top, int bottom, int left, int right,
+ int borderType, const Scalar& value=Scalar() );
+
+//! smooths the image using median filter.
+CV_EXPORTS_W void medianBlur( InputArray src, OutputArray dst, int ksize );
+//! smooths the image using Gaussian filter.
+CV_EXPORTS_W void GaussianBlur( InputArray src,
+ OutputArray dst, Size ksize,
+ double sigmaX, double sigmaY=0,
+ int borderType=BORDER_DEFAULT );
+//! smooths the image using bilateral filter
+CV_EXPORTS_W void bilateralFilter( InputArray src, OutputArray dst, int d,
+ double sigmaColor, double sigmaSpace,
+ int borderType=BORDER_DEFAULT );
+//! smooths the image using adaptive bilateral filter
+CV_EXPORTS_W void adaptiveBilateralFilter( InputArray src, OutputArray dst, Size ksize,
+ double sigmaSpace, double maxSigmaColor = 20.0, Point anchor=Point(-1, -1),
+ int borderType=BORDER_DEFAULT );
+//! smooths the image using the box filter. Each pixel is processed in O(1) time
+CV_EXPORTS_W void boxFilter( InputArray src, OutputArray dst, int ddepth,
+ Size ksize, Point anchor=Point(-1,-1),
+ bool normalize=true,
+ int borderType=BORDER_DEFAULT );
+//! a synonym for normalized box filter
+CV_EXPORTS_W void blur( InputArray src, OutputArray dst,
+ Size ksize, Point anchor=Point(-1,-1),
+ int borderType=BORDER_DEFAULT );
+
+//! applies non-separable 2D linear filter to the image
+CV_EXPORTS_W void filter2D( InputArray src, OutputArray dst, int ddepth,
+ InputArray kernel, Point anchor=Point(-1,-1),
+ double delta=0, int borderType=BORDER_DEFAULT );
+
+//! applies separable 2D linear filter to the image
+CV_EXPORTS_W void sepFilter2D( InputArray src, OutputArray dst, int ddepth,
+ InputArray kernelX, InputArray kernelY,
+ Point anchor=Point(-1,-1),
+ double delta=0, int borderType=BORDER_DEFAULT );
+
+//! applies generalized Sobel operator to the image
+CV_EXPORTS_W void Sobel( InputArray src, OutputArray dst, int ddepth,
+ int dx, int dy, int ksize=3,
+ double scale=1, double delta=0,
+ int borderType=BORDER_DEFAULT );
+
+//! applies the vertical or horizontal Scharr operator to the image
+CV_EXPORTS_W void Scharr( InputArray src, OutputArray dst, int ddepth,
+ int dx, int dy, double scale=1, double delta=0,
+ int borderType=BORDER_DEFAULT );
+
+//! applies Laplacian operator to the image
+CV_EXPORTS_W void Laplacian( InputArray src, OutputArray dst, int ddepth,
+ int ksize=1, double scale=1, double delta=0,
+ int borderType=BORDER_DEFAULT );
+
+//! applies Canny edge detector and produces the edge map.
+CV_EXPORTS_W void Canny( InputArray image, OutputArray edges,
+ double threshold1, double threshold2,
+ int apertureSize=3, bool L2gradient=false );
+
+//! computes minimum eigen value of 2x2 derivative covariation matrix at each pixel - the cornerness criteria
+CV_EXPORTS_W void cornerMinEigenVal( InputArray src, OutputArray dst,
+ int blockSize, int ksize=3,
+ int borderType=BORDER_DEFAULT );
+
+//! computes Harris cornerness criteria at each image pixel
+CV_EXPORTS_W void cornerHarris( InputArray src, OutputArray dst, int blockSize,
+ int ksize, double k,
+ int borderType=BORDER_DEFAULT );
+
+// low-level function for computing eigenvalues and eigenvectors of 2x2 matrices
+CV_EXPORTS void eigen2x2( const float* a, float* e, int n );
+
+//! computes both eigenvalues and the eigenvectors of 2x2 derivative covariation matrix at each pixel. The output is stored as 6-channel matrix.
+CV_EXPORTS_W void cornerEigenValsAndVecs( InputArray src, OutputArray dst,
+ int blockSize, int ksize,
+ int borderType=BORDER_DEFAULT );
+
+//! computes another complex cornerness criteria at each pixel
+CV_EXPORTS_W void preCornerDetect( InputArray src, OutputArray dst, int ksize,
+ int borderType=BORDER_DEFAULT );
+
+//! adjusts the corner locations with sub-pixel accuracy to maximize the certain cornerness criteria
+CV_EXPORTS_W void cornerSubPix( InputArray image, InputOutputArray corners,
+ Size winSize, Size zeroZone,
+ TermCriteria criteria );
+
+//! finds the strong enough corners where the cornerMinEigenVal() or cornerHarris() report the local maxima
+CV_EXPORTS_W void goodFeaturesToTrack( InputArray image, OutputArray corners,
+ int maxCorners, double qualityLevel, double minDistance,
+ InputArray mask=noArray(), int blockSize=3,
+ bool useHarrisDetector=false, double k=0.04 );
+
+//! finds lines in the black-n-white image using the standard or pyramid Hough transform
+CV_EXPORTS_W void HoughLines( InputArray image, OutputArray lines,
+ double rho, double theta, int threshold,
+ double srn=0, double stn=0 );
+
+//! finds line segments in the black-n-white image using probabilistic Hough transform
+CV_EXPORTS_W void HoughLinesP( InputArray image, OutputArray lines,
+ double rho, double theta, int threshold,
+ double minLineLength=0, double maxLineGap=0 );
+
+//! finds circles in the grayscale image using 2+1 gradient Hough transform
+CV_EXPORTS_W void HoughCircles( InputArray image, OutputArray circles,
+ int method, double dp, double minDist,
+ double param1=100, double param2=100,
+ int minRadius=0, int maxRadius=0 );
+
+enum
+{
+ GHT_POSITION = 0,
+ GHT_SCALE = 1,
+ GHT_ROTATION = 2
+};
+
+//! finds arbitrary template in the grayscale image using Generalized Hough Transform
+//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122.
+//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038.
+class CV_EXPORTS GeneralizedHough : public Algorithm
+{
+public:
+ static Ptr<GeneralizedHough> create(int method);
+
+ virtual ~GeneralizedHough();
+
+ //! set template to search
+ void setTemplate(InputArray templ, int cannyThreshold = 100, Point templCenter = Point(-1, -1));
+ void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter = Point(-1, -1));
+
+ //! find template on image
+ void detect(InputArray image, OutputArray positions, OutputArray votes = cv::noArray(), int cannyThreshold = 100);
+ void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes = cv::noArray());
+
+ void release();
+
+protected:
+ virtual void setTemplateImpl(const Mat& edges, const Mat& dx, const Mat& dy, Point templCenter) = 0;
+ virtual void detectImpl(const Mat& edges, const Mat& dx, const Mat& dy, OutputArray positions, OutputArray votes) = 0;
+ virtual void releaseImpl() = 0;
+
+private:
+ Mat edges_, dx_, dy_;
+};
+
+//! erodes the image (applies the local minimum operator)
+CV_EXPORTS_W void erode( InputArray src, OutputArray dst, InputArray kernel,
+ Point anchor=Point(-1,-1), int iterations=1,
+ int borderType=BORDER_CONSTANT,
+ const Scalar& borderValue=morphologyDefaultBorderValue() );
+
+//! dilates the image (applies the local maximum operator)
+CV_EXPORTS_W void dilate( InputArray src, OutputArray dst, InputArray kernel,
+ Point anchor=Point(-1,-1), int iterations=1,
+ int borderType=BORDER_CONSTANT,
+ const Scalar& borderValue=morphologyDefaultBorderValue() );
+
+//! applies an advanced morphological operation to the image
+CV_EXPORTS_W void morphologyEx( InputArray src, OutputArray dst,
+ int op, InputArray kernel,
+ Point anchor=Point(-1,-1), int iterations=1,
+ int borderType=BORDER_CONSTANT,
+ const Scalar& borderValue=morphologyDefaultBorderValue() );
+
+//! interpolation algorithm
+enum
+{
+ INTER_NEAREST=CV_INTER_NN, //!< nearest neighbor interpolation
+ INTER_LINEAR=CV_INTER_LINEAR, //!< bilinear interpolation
+ INTER_CUBIC=CV_INTER_CUBIC, //!< bicubic interpolation
+ INTER_AREA=CV_INTER_AREA, //!< area-based (or super) interpolation
+ INTER_LANCZOS4=CV_INTER_LANCZOS4, //!< Lanczos interpolation over 8x8 neighborhood
+ INTER_MAX=7,
+ WARP_INVERSE_MAP=CV_WARP_INVERSE_MAP
+};
+
+//! resizes the image
+CV_EXPORTS_W void resize( InputArray src, OutputArray dst,
+ Size dsize, double fx=0, double fy=0,
+ int interpolation=INTER_LINEAR );
+
+//! warps the image using affine transformation
+CV_EXPORTS_W void warpAffine( InputArray src, OutputArray dst,
+ InputArray M, Size dsize,
+ int flags=INTER_LINEAR,
+ int borderMode=BORDER_CONSTANT,
+ const Scalar& borderValue=Scalar());
+
+//! warps the image using perspective transformation
+CV_EXPORTS_W void warpPerspective( InputArray src, OutputArray dst,
+ InputArray M, Size dsize,
+ int flags=INTER_LINEAR,
+ int borderMode=BORDER_CONSTANT,
+ const Scalar& borderValue=Scalar());
+
+enum
+{
+ INTER_BITS=5, INTER_BITS2=INTER_BITS*2,
+ INTER_TAB_SIZE=(1<<INTER_BITS),
+ INTER_TAB_SIZE2=INTER_TAB_SIZE*INTER_TAB_SIZE
+};
+
+//! warps the image using the precomputed maps. The maps are stored in either floating-point or integer fixed-point format
+CV_EXPORTS_W void remap( InputArray src, OutputArray dst,
+ InputArray map1, InputArray map2,
+ int interpolation, int borderMode=BORDER_CONSTANT,
+ const Scalar& borderValue=Scalar());
+
+//! converts maps for remap from floating-point to fixed-point format or backwards
+CV_EXPORTS_W void convertMaps( InputArray map1, InputArray map2,
+ OutputArray dstmap1, OutputArray dstmap2,
+ int dstmap1type, bool nninterpolation=false );
+
+//! returns 2x3 affine transformation matrix for the planar rotation.
+CV_EXPORTS_W Mat getRotationMatrix2D( Point2f center, double angle, double scale );
+//! returns 3x3 perspective transformation for the corresponding 4 point pairs.
+CV_EXPORTS Mat getPerspectiveTransform( const Point2f src[], const Point2f dst[] );
+//! returns 2x3 affine transformation for the corresponding 3 point pairs.
+CV_EXPORTS Mat getAffineTransform( const Point2f src[], const Point2f dst[] );
+//! computes 2x3 affine transformation matrix that is inverse to the specified 2x3 affine transformation.
+CV_EXPORTS_W void invertAffineTransform( InputArray M, OutputArray iM );
+
+CV_EXPORTS_W Mat getPerspectiveTransform( InputArray src, InputArray dst );
+CV_EXPORTS_W Mat getAffineTransform( InputArray src, InputArray dst );
+
+//! extracts rectangle from the image at sub-pixel location
+CV_EXPORTS_W void getRectSubPix( InputArray image, Size patchSize,
+ Point2f center, OutputArray patch, int patchType=-1 );
+
+//! computes the integral image
+CV_EXPORTS_W void integral( InputArray src, OutputArray sum, int sdepth=-1 );
+
+//! computes the integral image and integral for the squared image
+CV_EXPORTS_AS(integral2) void integral( InputArray src, OutputArray sum,
+ OutputArray sqsum, int sdepth=-1 );
+//! computes the integral image, integral for the squared image and the tilted integral image
+CV_EXPORTS_AS(integral3) void integral( InputArray src, OutputArray sum,
+ OutputArray sqsum, OutputArray tilted,
+ int sdepth=-1 );
+
+//! adds image to the accumulator (dst += src). Unlike cv::add, dst and src can have different types.
+CV_EXPORTS_W void accumulate( InputArray src, InputOutputArray dst,
+ InputArray mask=noArray() );
+//! adds squared src image to the accumulator (dst += src*src).
+CV_EXPORTS_W void accumulateSquare( InputArray src, InputOutputArray dst,
+ InputArray mask=noArray() );
+//! adds product of the 2 images to the accumulator (dst += src1*src2).
+CV_EXPORTS_W void accumulateProduct( InputArray src1, InputArray src2,
+ InputOutputArray dst, InputArray mask=noArray() );
+//! updates the running average (dst = dst*(1-alpha) + src*alpha)
+CV_EXPORTS_W void accumulateWeighted( InputArray src, InputOutputArray dst,
+ double alpha, InputArray mask=noArray() );
+
+//! computes PSNR image/video quality metric
+CV_EXPORTS_W double PSNR(InputArray src1, InputArray src2);
+
+CV_EXPORTS_W Point2d phaseCorrelate(InputArray src1, InputArray src2,
+ InputArray window = noArray());
+CV_EXPORTS_W Point2d phaseCorrelateRes(InputArray src1, InputArray src2,
+ InputArray window, CV_OUT double* response = 0);
+CV_EXPORTS_W void createHanningWindow(OutputArray dst, Size winSize, int type);
+
+//! type of the threshold operation
+enum { THRESH_BINARY=CV_THRESH_BINARY, THRESH_BINARY_INV=CV_THRESH_BINARY_INV,
+ THRESH_TRUNC=CV_THRESH_TRUNC, THRESH_TOZERO=CV_THRESH_TOZERO,
+ THRESH_TOZERO_INV=CV_THRESH_TOZERO_INV, THRESH_MASK=CV_THRESH_MASK,
+ THRESH_OTSU=CV_THRESH_OTSU };
+
+//! applies fixed threshold to the image
+CV_EXPORTS_W double threshold( InputArray src, OutputArray dst,
+ double thresh, double maxval, int type );
+
+//! adaptive threshold algorithm
+enum { ADAPTIVE_THRESH_MEAN_C=0, ADAPTIVE_THRESH_GAUSSIAN_C=1 };
+
+//! applies variable (adaptive) threshold to the image
+CV_EXPORTS_W void adaptiveThreshold( InputArray src, OutputArray dst,
+ double maxValue, int adaptiveMethod,
+ int thresholdType, int blockSize, double C );
+
+//! smooths and downsamples the image
+CV_EXPORTS_W void pyrDown( InputArray src, OutputArray dst,
+ const Size& dstsize=Size(), int borderType=BORDER_DEFAULT );
+//! upsamples and smoothes the image
+CV_EXPORTS_W void pyrUp( InputArray src, OutputArray dst,
+ const Size& dstsize=Size(), int borderType=BORDER_DEFAULT );
+
+//! builds the gaussian pyramid using pyrDown() as a basic operation
+CV_EXPORTS void buildPyramid( InputArray src, OutputArrayOfArrays dst,
+ int maxlevel, int borderType=BORDER_DEFAULT );
+
+//! corrects lens distortion for the given camera matrix and distortion coefficients
+CV_EXPORTS_W void undistort( InputArray src, OutputArray dst,
+ InputArray cameraMatrix,
+ InputArray distCoeffs,
+ InputArray newCameraMatrix=noArray() );
+
+//! initializes maps for cv::remap() to correct lens distortion and optionally rectify the image
+CV_EXPORTS_W void initUndistortRectifyMap( InputArray cameraMatrix, InputArray distCoeffs,
+ InputArray R, InputArray newCameraMatrix,
+ Size size, int m1type, OutputArray map1, OutputArray map2 );
+
+enum
+{
+ PROJ_SPHERICAL_ORTHO = 0,
+ PROJ_SPHERICAL_EQRECT = 1
+};
+
+//! initializes maps for cv::remap() for wide-angle
+CV_EXPORTS_W float initWideAngleProjMap( InputArray cameraMatrix, InputArray distCoeffs,
+ Size imageSize, int destImageWidth,
+ int m1type, OutputArray map1, OutputArray map2,
+ int projType=PROJ_SPHERICAL_EQRECT, double alpha=0);
+
+//! returns the default new camera matrix (by default it is the same as cameraMatrix unless centerPricipalPoint=true)
+CV_EXPORTS_W Mat getDefaultNewCameraMatrix( InputArray cameraMatrix, Size imgsize=Size(),
+ bool centerPrincipalPoint=false );
+
+//! returns points' coordinates after lens distortion correction
+CV_EXPORTS_W void undistortPoints( InputArray src, OutputArray dst,
+ InputArray cameraMatrix, InputArray distCoeffs,
+ InputArray R=noArray(), InputArray P=noArray());
+
+template<> CV_EXPORTS void Ptr<CvHistogram>::delete_obj();
+
+//! computes the joint dense histogram for a set of images.
+CV_EXPORTS void calcHist( const Mat* images, int nimages,
+ const int* channels, InputArray mask,
+ OutputArray hist, int dims, const int* histSize,
+ const float** ranges, bool uniform=true, bool accumulate=false );
+
+//! computes the joint sparse histogram for a set of images.
+CV_EXPORTS void calcHist( const Mat* images, int nimages,
+ const int* channels, InputArray mask,
+ SparseMat& hist, int dims,
+ const int* histSize, const float** ranges,
+ bool uniform=true, bool accumulate=false );
+
+CV_EXPORTS_W void calcHist( InputArrayOfArrays images,
+ const vector<int>& channels,
+ InputArray mask, OutputArray hist,
+ const vector<int>& histSize,
+ const vector<float>& ranges,
+ bool accumulate=false );
+
+//! computes back projection for the set of images
+CV_EXPORTS void calcBackProject( const Mat* images, int nimages,
+ const int* channels, InputArray hist,
+ OutputArray backProject, const float** ranges,
+ double scale=1, bool uniform=true );
+
+//! computes back projection for the set of images
+CV_EXPORTS void calcBackProject( const Mat* images, int nimages,
+ const int* channels, const SparseMat& hist,
+ OutputArray backProject, const float** ranges,
+ double scale=1, bool uniform=true );
+
+CV_EXPORTS_W void calcBackProject( InputArrayOfArrays images, const vector<int>& channels,
+ InputArray hist, OutputArray dst,
+ const vector<float>& ranges,
+ double scale );
+
+/*CV_EXPORTS void calcBackProjectPatch( const Mat* images, int nimages, const int* channels,
+ InputArray hist, OutputArray dst, Size patchSize,
+ int method, double factor=1 );
+
+CV_EXPORTS_W void calcBackProjectPatch( InputArrayOfArrays images, const vector<int>& channels,
+ InputArray hist, OutputArray dst, Size patchSize,
+ int method, double factor=1 );*/
+
+//! compares two histograms stored in dense arrays
+CV_EXPORTS_W double compareHist( InputArray H1, InputArray H2, int method );
+
+//! compares two histograms stored in sparse arrays
+CV_EXPORTS double compareHist( const SparseMat& H1, const SparseMat& H2, int method );
+
+//! normalizes the grayscale image brightness and contrast by normalizing its histogram
+CV_EXPORTS_W void equalizeHist( InputArray src, OutputArray dst );
+
+class CV_EXPORTS_W CLAHE : public Algorithm
+{
+public:
+ CV_WRAP virtual void apply(InputArray src, OutputArray dst) = 0;
+
+ CV_WRAP virtual void setClipLimit(double clipLimit) = 0;
+ CV_WRAP virtual double getClipLimit() const = 0;
+
+ CV_WRAP virtual void setTilesGridSize(Size tileGridSize) = 0;
+ CV_WRAP virtual Size getTilesGridSize() const = 0;
+
+ CV_WRAP virtual void collectGarbage() = 0;
+};
+CV_EXPORTS_W Ptr<CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8));
+
+CV_EXPORTS float EMD( InputArray signature1, InputArray signature2,
+ int distType, InputArray cost=noArray(),
+ float* lowerBound=0, OutputArray flow=noArray() );
+
+//! segments the image using watershed algorithm
+CV_EXPORTS_W void watershed( InputArray image, InputOutputArray markers );
+
+//! filters image using meanshift algorithm
+CV_EXPORTS_W void pyrMeanShiftFiltering( InputArray src, OutputArray dst,
+ double sp, double sr, int maxLevel=1,
+ TermCriteria termcrit=TermCriteria(
+ TermCriteria::MAX_ITER+TermCriteria::EPS,5,1) );
+
+//! class of the pixel in GrabCut algorithm
+enum
+{
+ GC_BGD = 0, //!< background
+ GC_FGD = 1, //!< foreground
+ GC_PR_BGD = 2, //!< most probably background
+ GC_PR_FGD = 3 //!< most probably foreground
+};
+
+//! GrabCut algorithm flags
+enum
+{
+ GC_INIT_WITH_RECT = 0,
+ GC_INIT_WITH_MASK = 1,
+ GC_EVAL = 2
+};
+
+//! segments the image using GrabCut algorithm
+CV_EXPORTS_W void grabCut( InputArray img, InputOutputArray mask, Rect rect,
+ InputOutputArray bgdModel, InputOutputArray fgdModel,
+ int iterCount, int mode = GC_EVAL );
+
+enum
+{
+ DIST_LABEL_CCOMP = 0,
+ DIST_LABEL_PIXEL = 1
+};
+
+//! builds the discrete Voronoi diagram
+CV_EXPORTS_AS(distanceTransformWithLabels) void distanceTransform( InputArray src, OutputArray dst,
+ OutputArray labels, int distanceType, int maskSize,
+ int labelType=DIST_LABEL_CCOMP );
+
+//! computes the distance transform map
+CV_EXPORTS_W void distanceTransform( InputArray src, OutputArray dst,
+ int distanceType, int maskSize );
+
+enum { FLOODFILL_FIXED_RANGE = 1 << 16, FLOODFILL_MASK_ONLY = 1 << 17 };
+
+//! fills the semi-uniform image region starting from the specified seed point
+CV_EXPORTS int floodFill( InputOutputArray image,
+ Point seedPoint, Scalar newVal, CV_OUT Rect* rect=0,
+ Scalar loDiff=Scalar(), Scalar upDiff=Scalar(),
+ int flags=4 );
+
+//! fills the semi-uniform image region and/or the mask starting from the specified seed point
+CV_EXPORTS_W int floodFill( InputOutputArray image, InputOutputArray mask,
+ Point seedPoint, Scalar newVal, CV_OUT Rect* rect=0,
+ Scalar loDiff=Scalar(), Scalar upDiff=Scalar(),
+ int flags=4 );
+
+
+enum
+{
+ COLOR_BGR2BGRA =0,
+ COLOR_RGB2RGBA =COLOR_BGR2BGRA,
+
+ COLOR_BGRA2BGR =1,
+ COLOR_RGBA2RGB =COLOR_BGRA2BGR,
+
+ COLOR_BGR2RGBA =2,
+ COLOR_RGB2BGRA =COLOR_BGR2RGBA,
+
+ COLOR_RGBA2BGR =3,
+ COLOR_BGRA2RGB =COLOR_RGBA2BGR,
+
+ COLOR_BGR2RGB =4,
+ COLOR_RGB2BGR =COLOR_BGR2RGB,
+
+ COLOR_BGRA2RGBA =5,
+ COLOR_RGBA2BGRA =COLOR_BGRA2RGBA,
+
+ COLOR_BGR2GRAY =6,
+ COLOR_RGB2GRAY =7,
+ COLOR_GRAY2BGR =8,
+ COLOR_GRAY2RGB =COLOR_GRAY2BGR,
+ COLOR_GRAY2BGRA =9,
+ COLOR_GRAY2RGBA =COLOR_GRAY2BGRA,
+ COLOR_BGRA2GRAY =10,
+ COLOR_RGBA2GRAY =11,
+
+ COLOR_BGR2BGR565 =12,
+ COLOR_RGB2BGR565 =13,
+ COLOR_BGR5652BGR =14,
+ COLOR_BGR5652RGB =15,
+ COLOR_BGRA2BGR565 =16,
+ COLOR_RGBA2BGR565 =17,
+ COLOR_BGR5652BGRA =18,
+ COLOR_BGR5652RGBA =19,
+
+ COLOR_GRAY2BGR565 =20,
+ COLOR_BGR5652GRAY =21,
+
+ COLOR_BGR2BGR555 =22,
+ COLOR_RGB2BGR555 =23,
+ COLOR_BGR5552BGR =24,
+ COLOR_BGR5552RGB =25,
+ COLOR_BGRA2BGR555 =26,
+ COLOR_RGBA2BGR555 =27,
+ COLOR_BGR5552BGRA =28,
+ COLOR_BGR5552RGBA =29,
+
+ COLOR_GRAY2BGR555 =30,
+ COLOR_BGR5552GRAY =31,
+
+ COLOR_BGR2XYZ =32,
+ COLOR_RGB2XYZ =33,
+ COLOR_XYZ2BGR =34,
+ COLOR_XYZ2RGB =35,
+
+ COLOR_BGR2YCrCb =36,
+ COLOR_RGB2YCrCb =37,
+ COLOR_YCrCb2BGR =38,
+ COLOR_YCrCb2RGB =39,
+
+ COLOR_BGR2HSV =40,
+ COLOR_RGB2HSV =41,
+
+ COLOR_BGR2Lab =44,
+ COLOR_RGB2Lab =45,
+
+ COLOR_BayerBG2BGR =46,
+ COLOR_BayerGB2BGR =47,
+ COLOR_BayerRG2BGR =48,
+ COLOR_BayerGR2BGR =49,
+
+ COLOR_BayerBG2RGB =COLOR_BayerRG2BGR,
+ COLOR_BayerGB2RGB =COLOR_BayerGR2BGR,
+ COLOR_BayerRG2RGB =COLOR_BayerBG2BGR,
+ COLOR_BayerGR2RGB =COLOR_BayerGB2BGR,
+
+ COLOR_BGR2Luv =50,
+ COLOR_RGB2Luv =51,
+ COLOR_BGR2HLS =52,
+ COLOR_RGB2HLS =53,
+
+ COLOR_HSV2BGR =54,
+ COLOR_HSV2RGB =55,
+
+ COLOR_Lab2BGR =56,
+ COLOR_Lab2RGB =57,
+ COLOR_Luv2BGR =58,
+ COLOR_Luv2RGB =59,
+ COLOR_HLS2BGR =60,
+ COLOR_HLS2RGB =61,
+
+ COLOR_BayerBG2BGR_VNG =62,
+ COLOR_BayerGB2BGR_VNG =63,
+ COLOR_BayerRG2BGR_VNG =64,
+ COLOR_BayerGR2BGR_VNG =65,
+
+ COLOR_BayerBG2RGB_VNG =COLOR_BayerRG2BGR_VNG,
+ COLOR_BayerGB2RGB_VNG =COLOR_BayerGR2BGR_VNG,
+ COLOR_BayerRG2RGB_VNG =COLOR_BayerBG2BGR_VNG,
+ COLOR_BayerGR2RGB_VNG =COLOR_BayerGB2BGR_VNG,
+
+ COLOR_BGR2HSV_FULL = 66,
+ COLOR_RGB2HSV_FULL = 67,
+ COLOR_BGR2HLS_FULL = 68,
+ COLOR_RGB2HLS_FULL = 69,
+
+ COLOR_HSV2BGR_FULL = 70,
+ COLOR_HSV2RGB_FULL = 71,
+ COLOR_HLS2BGR_FULL = 72,
+ COLOR_HLS2RGB_FULL = 73,
+
+ COLOR_LBGR2Lab = 74,
+ COLOR_LRGB2Lab = 75,
+ COLOR_LBGR2Luv = 76,
+ COLOR_LRGB2Luv = 77,
+
+ COLOR_Lab2LBGR = 78,
+ COLOR_Lab2LRGB = 79,
+ COLOR_Luv2LBGR = 80,
+ COLOR_Luv2LRGB = 81,
+
+ COLOR_BGR2YUV = 82,
+ COLOR_RGB2YUV = 83,
+ COLOR_YUV2BGR = 84,
+ COLOR_YUV2RGB = 85,
+
+ COLOR_BayerBG2GRAY = 86,
+ COLOR_BayerGB2GRAY = 87,
+ COLOR_BayerRG2GRAY = 88,
+ COLOR_BayerGR2GRAY = 89,
+
+ //YUV 4:2:0 formats family
+ COLOR_YUV2RGB_NV12 = 90,
+ COLOR_YUV2BGR_NV12 = 91,
+ COLOR_YUV2RGB_NV21 = 92,
+ COLOR_YUV2BGR_NV21 = 93,
+ COLOR_YUV420sp2RGB = COLOR_YUV2RGB_NV21,
+ COLOR_YUV420sp2BGR = COLOR_YUV2BGR_NV21,
+
+ COLOR_YUV2RGBA_NV12 = 94,
+ COLOR_YUV2BGRA_NV12 = 95,
+ COLOR_YUV2RGBA_NV21 = 96,
+ COLOR_YUV2BGRA_NV21 = 97,
+ COLOR_YUV420sp2RGBA = COLOR_YUV2RGBA_NV21,
+ COLOR_YUV420sp2BGRA = COLOR_YUV2BGRA_NV21,
+
+ COLOR_YUV2RGB_YV12 = 98,
+ COLOR_YUV2BGR_YV12 = 99,
+ COLOR_YUV2RGB_IYUV = 100,
+ COLOR_YUV2BGR_IYUV = 101,
+ COLOR_YUV2RGB_I420 = COLOR_YUV2RGB_IYUV,
+ COLOR_YUV2BGR_I420 = COLOR_YUV2BGR_IYUV,
+ COLOR_YUV420p2RGB = COLOR_YUV2RGB_YV12,
+ COLOR_YUV420p2BGR = COLOR_YUV2BGR_YV12,
+
+ COLOR_YUV2RGBA_YV12 = 102,
+ COLOR_YUV2BGRA_YV12 = 103,
+ COLOR_YUV2RGBA_IYUV = 104,
+ COLOR_YUV2BGRA_IYUV = 105,
+ COLOR_YUV2RGBA_I420 = COLOR_YUV2RGBA_IYUV,
+ COLOR_YUV2BGRA_I420 = COLOR_YUV2BGRA_IYUV,
+ COLOR_YUV420p2RGBA = COLOR_YUV2RGBA_YV12,
+ COLOR_YUV420p2BGRA = COLOR_YUV2BGRA_YV12,
+
+ COLOR_YUV2GRAY_420 = 106,
+ COLOR_YUV2GRAY_NV21 = COLOR_YUV2GRAY_420,
+ COLOR_YUV2GRAY_NV12 = COLOR_YUV2GRAY_420,
+ COLOR_YUV2GRAY_YV12 = COLOR_YUV2GRAY_420,
+ COLOR_YUV2GRAY_IYUV = COLOR_YUV2GRAY_420,
+ COLOR_YUV2GRAY_I420 = COLOR_YUV2GRAY_420,
+ COLOR_YUV420sp2GRAY = COLOR_YUV2GRAY_420,
+ COLOR_YUV420p2GRAY = COLOR_YUV2GRAY_420,
+
+ //YUV 4:2:2 formats family
+ COLOR_YUV2RGB_UYVY = 107,
+ COLOR_YUV2BGR_UYVY = 108,
+ //COLOR_YUV2RGB_VYUY = 109,
+ //COLOR_YUV2BGR_VYUY = 110,
+ COLOR_YUV2RGB_Y422 = COLOR_YUV2RGB_UYVY,
+ COLOR_YUV2BGR_Y422 = COLOR_YUV2BGR_UYVY,
+ COLOR_YUV2RGB_UYNV = COLOR_YUV2RGB_UYVY,
+ COLOR_YUV2BGR_UYNV = COLOR_YUV2BGR_UYVY,
+
+ COLOR_YUV2RGBA_UYVY = 111,
+ COLOR_YUV2BGRA_UYVY = 112,
+ //COLOR_YUV2RGBA_VYUY = 113,
+ //COLOR_YUV2BGRA_VYUY = 114,
+ COLOR_YUV2RGBA_Y422 = COLOR_YUV2RGBA_UYVY,
+ COLOR_YUV2BGRA_Y422 = COLOR_YUV2BGRA_UYVY,
+ COLOR_YUV2RGBA_UYNV = COLOR_YUV2RGBA_UYVY,
+ COLOR_YUV2BGRA_UYNV = COLOR_YUV2BGRA_UYVY,
+
+ COLOR_YUV2RGB_YUY2 = 115,
+ COLOR_YUV2BGR_YUY2 = 116,
+ COLOR_YUV2RGB_YVYU = 117,
+ COLOR_YUV2BGR_YVYU = 118,
+ COLOR_YUV2RGB_YUYV = COLOR_YUV2RGB_YUY2,
+ COLOR_YUV2BGR_YUYV = COLOR_YUV2BGR_YUY2,
+ COLOR_YUV2RGB_YUNV = COLOR_YUV2RGB_YUY2,
+ COLOR_YUV2BGR_YUNV = COLOR_YUV2BGR_YUY2,
+
+ COLOR_YUV2RGBA_YUY2 = 119,
+ COLOR_YUV2BGRA_YUY2 = 120,
+ COLOR_YUV2RGBA_YVYU = 121,
+ COLOR_YUV2BGRA_YVYU = 122,
+ COLOR_YUV2RGBA_YUYV = COLOR_YUV2RGBA_YUY2,
+ COLOR_YUV2BGRA_YUYV = COLOR_YUV2BGRA_YUY2,
+ COLOR_YUV2RGBA_YUNV = COLOR_YUV2RGBA_YUY2,
+ COLOR_YUV2BGRA_YUNV = COLOR_YUV2BGRA_YUY2,
+
+ COLOR_YUV2GRAY_UYVY = 123,
+ COLOR_YUV2GRAY_YUY2 = 124,
+ //COLOR_YUV2GRAY_VYUY = COLOR_YUV2GRAY_UYVY,
+ COLOR_YUV2GRAY_Y422 = COLOR_YUV2GRAY_UYVY,
+ COLOR_YUV2GRAY_UYNV = COLOR_YUV2GRAY_UYVY,
+ COLOR_YUV2GRAY_YVYU = COLOR_YUV2GRAY_YUY2,
+ COLOR_YUV2GRAY_YUYV = COLOR_YUV2GRAY_YUY2,
+ COLOR_YUV2GRAY_YUNV = COLOR_YUV2GRAY_YUY2,
+
+ // alpha premultiplication
+ COLOR_RGBA2mRGBA = 125,
+ COLOR_mRGBA2RGBA = 126,
+
+ COLOR_RGB2YUV_I420 = 127,
+ COLOR_BGR2YUV_I420 = 128,
+ COLOR_RGB2YUV_IYUV = COLOR_RGB2YUV_I420,
+ COLOR_BGR2YUV_IYUV = COLOR_BGR2YUV_I420,
+
+ COLOR_RGBA2YUV_I420 = 129,
+ COLOR_BGRA2YUV_I420 = 130,
+ COLOR_RGBA2YUV_IYUV = COLOR_RGBA2YUV_I420,
+ COLOR_BGRA2YUV_IYUV = COLOR_BGRA2YUV_I420,
+ COLOR_RGB2YUV_YV12 = 131,
+ COLOR_BGR2YUV_YV12 = 132,
+ COLOR_RGBA2YUV_YV12 = 133,
+ COLOR_BGRA2YUV_YV12 = 134,
+
+ COLOR_COLORCVT_MAX = 135
+};
+
+
+//! converts image from one color space to another
+CV_EXPORTS_W void cvtColor( InputArray src, OutputArray dst, int code, int dstCn=0 );
+
+//! raster image moments
+class CV_EXPORTS_W_MAP Moments
+{
+public:
+ //! the default constructor
+ Moments();
+ //! the full constructor
+ Moments(double m00, double m10, double m01, double m20, double m11,
+ double m02, double m30, double m21, double m12, double m03 );
+ //! the conversion from CvMoments
+ Moments( const CvMoments& moments );
+ //! the conversion to CvMoments
+ operator CvMoments() const;
+
+ //! spatial moments
+ CV_PROP_RW double m00, m10, m01, m20, m11, m02, m30, m21, m12, m03;
+ //! central moments
+ CV_PROP_RW double mu20, mu11, mu02, mu30, mu21, mu12, mu03;
+ //! central normalized moments
+ CV_PROP_RW double nu20, nu11, nu02, nu30, nu21, nu12, nu03;
+};
+
+//! computes moments of the rasterized shape or a vector of points
+CV_EXPORTS_W Moments moments( InputArray array, bool binaryImage=false );
+
+//! computes 7 Hu invariants from the moments
+CV_EXPORTS void HuMoments( const Moments& moments, double hu[7] );
+CV_EXPORTS_W void HuMoments( const Moments& m, CV_OUT OutputArray hu );
+
+//! type of the template matching operation
+enum { TM_SQDIFF=0, TM_SQDIFF_NORMED=1, TM_CCORR=2, TM_CCORR_NORMED=3, TM_CCOEFF=4, TM_CCOEFF_NORMED=5 };
+
+//! computes the proximity map for the raster template and the image where the template is searched for
+CV_EXPORTS_W void matchTemplate( InputArray image, InputArray templ,
+ OutputArray result, int method );
+
+//! mode of the contour retrieval algorithm
+enum
+{
+ RETR_EXTERNAL=CV_RETR_EXTERNAL, //!< retrieve only the most external (top-level) contours
+ RETR_LIST=CV_RETR_LIST, //!< retrieve all the contours without any hierarchical information
+ RETR_CCOMP=CV_RETR_CCOMP, //!< retrieve the connected components (that can possibly be nested)
+ RETR_TREE=CV_RETR_TREE, //!< retrieve all the contours and the whole hierarchy
+ RETR_FLOODFILL=CV_RETR_FLOODFILL
+};
+
+//! the contour approximation algorithm
+enum
+{
+ CHAIN_APPROX_NONE=CV_CHAIN_APPROX_NONE,
+ CHAIN_APPROX_SIMPLE=CV_CHAIN_APPROX_SIMPLE,
+ CHAIN_APPROX_TC89_L1=CV_CHAIN_APPROX_TC89_L1,
+ CHAIN_APPROX_TC89_KCOS=CV_CHAIN_APPROX_TC89_KCOS
+};
+
+//! retrieves contours and the hierarchical information from black-n-white image.
+CV_EXPORTS_W void findContours( InputOutputArray image, OutputArrayOfArrays contours,
+ OutputArray hierarchy, int mode,
+ int method, Point offset=Point());
+
+//! retrieves contours from black-n-white image.
+CV_EXPORTS void findContours( InputOutputArray image, OutputArrayOfArrays contours,
+ int mode, int method, Point offset=Point());
+
+//! draws contours in the image
+CV_EXPORTS_W void drawContours( InputOutputArray image, InputArrayOfArrays contours,
+ int contourIdx, const Scalar& color,
+ int thickness=1, int lineType=8,
+ InputArray hierarchy=noArray(),
+ int maxLevel=INT_MAX, Point offset=Point() );
+
+//! approximates contour or a curve using Douglas-Peucker algorithm
+CV_EXPORTS_W void approxPolyDP( InputArray curve,
+ OutputArray approxCurve,
+ double epsilon, bool closed );
+
+//! computes the contour perimeter (closed=true) or a curve length
+CV_EXPORTS_W double arcLength( InputArray curve, bool closed );
+//! computes the bounding rectangle for a contour
+CV_EXPORTS_W Rect boundingRect( InputArray points );
+//! computes the contour area
+CV_EXPORTS_W double contourArea( InputArray contour, bool oriented=false );
+//! computes the minimal rotated rectangle for a set of points
+CV_EXPORTS_W RotatedRect minAreaRect( InputArray points );
+//! computes the minimal enclosing circle for a set of points
+CV_EXPORTS_W void minEnclosingCircle( InputArray points,
+ CV_OUT Point2f& center, CV_OUT float& radius );
+//! matches two contours using one of the available algorithms
+CV_EXPORTS_W double matchShapes( InputArray contour1, InputArray contour2,
+ int method, double parameter );
+//! computes convex hull for a set of 2D points.
+CV_EXPORTS_W void convexHull( InputArray points, OutputArray hull,
+ bool clockwise=false, bool returnPoints=true );
+//! computes the contour convexity defects
+CV_EXPORTS_W void convexityDefects( InputArray contour, InputArray convexhull, OutputArray convexityDefects );
+
+//! returns true if the contour is convex. Does not support contours with self-intersection
+CV_EXPORTS_W bool isContourConvex( InputArray contour );
+
+//! finds intersection of two convex polygons
+CV_EXPORTS_W float intersectConvexConvex( InputArray _p1, InputArray _p2,
+ OutputArray _p12, bool handleNested=true );
+
+//! fits ellipse to the set of 2D points
+CV_EXPORTS_W RotatedRect fitEllipse( InputArray points );
+
+//! fits line to the set of 2D points using M-estimator algorithm
+CV_EXPORTS_W void fitLine( InputArray points, OutputArray line, int distType,
+ double param, double reps, double aeps );
+//! checks if the point is inside the contour. Optionally computes the signed distance from the point to the contour boundary
+CV_EXPORTS_W double pointPolygonTest( InputArray contour, Point2f pt, bool measureDist );
+
+
+class CV_EXPORTS_W Subdiv2D
+{
+public:
+ enum
+ {
+ PTLOC_ERROR = -2,
+ PTLOC_OUTSIDE_RECT = -1,
+ PTLOC_INSIDE = 0,
+ PTLOC_VERTEX = 1,
+ PTLOC_ON_EDGE = 2
+ };
+
+ enum
+ {
+ NEXT_AROUND_ORG = 0x00,
+ NEXT_AROUND_DST = 0x22,
+ PREV_AROUND_ORG = 0x11,
+ PREV_AROUND_DST = 0x33,
+ NEXT_AROUND_LEFT = 0x13,
+ NEXT_AROUND_RIGHT = 0x31,
+ PREV_AROUND_LEFT = 0x20,
+ PREV_AROUND_RIGHT = 0x02
+ };
+
+ CV_WRAP Subdiv2D();
+ CV_WRAP Subdiv2D(Rect rect);
+ CV_WRAP void initDelaunay(Rect rect);
+
+ CV_WRAP int insert(Point2f pt);
+ CV_WRAP void insert(const vector<Point2f>& ptvec);
+ CV_WRAP int locate(Point2f pt, CV_OUT int& edge, CV_OUT int& vertex);
+
+ CV_WRAP int findNearest(Point2f pt, CV_OUT Point2f* nearestPt=0);
+ CV_WRAP void getEdgeList(CV_OUT vector<Vec4f>& edgeList) const;
+ CV_WRAP void getTriangleList(CV_OUT vector<Vec6f>& triangleList) const;
+ CV_WRAP void getVoronoiFacetList(const vector<int>& idx, CV_OUT vector<vector<Point2f> >& facetList,
+ CV_OUT vector<Point2f>& facetCenters);
+
+ CV_WRAP Point2f getVertex(int vertex, CV_OUT int* firstEdge=0) const;
+
+ CV_WRAP int getEdge( int edge, int nextEdgeType ) const;
+ CV_WRAP int nextEdge(int edge) const;
+ CV_WRAP int rotateEdge(int edge, int rotate) const;
+ CV_WRAP int symEdge(int edge) const;
+ CV_WRAP int edgeOrg(int edge, CV_OUT Point2f* orgpt=0) const;
+ CV_WRAP int edgeDst(int edge, CV_OUT Point2f* dstpt=0) const;
+
+protected:
+ int newEdge();
+ void deleteEdge(int edge);
+ int newPoint(Point2f pt, bool isvirtual, int firstEdge=0);
+ void deletePoint(int vtx);
+ void setEdgePoints( int edge, int orgPt, int dstPt );
+ void splice( int edgeA, int edgeB );
+ int connectEdges( int edgeA, int edgeB );
+ void swapEdges( int edge );
+ int isRightOf(Point2f pt, int edge) const;
+ void calcVoronoi();
+ void clearVoronoi();
+ void checkSubdiv() const;
+
+ struct CV_EXPORTS Vertex
+ {
+ Vertex();
+ Vertex(Point2f pt, bool _isvirtual, int _firstEdge=0);
+ bool isvirtual() const;
+ bool isfree() const;
+ int firstEdge;
+ int type;
+ Point2f pt;
+ };
+ struct CV_EXPORTS QuadEdge
+ {
+ QuadEdge();
+ QuadEdge(int edgeidx);
+ bool isfree() const;
+ int next[4];
+ int pt[4];
+ };
+
+ vector<Vertex> vtx;
+ vector<QuadEdge> qedges;
+ int freeQEdge;
+ int freePoint;
+ bool validGeometry;
+
+ int recentEdge;
+ Point2f topLeft;
+ Point2f bottomRight;
+};
+
+}
+
+#endif /* __cplusplus */
+
+#endif
+
+/* End of file. */