diff options
author | siddhu8990 | 2017-04-24 14:08:37 +0530 |
---|---|---|
committer | siddhu8990 | 2017-04-24 14:08:37 +0530 |
commit | c7e9597db39140c1d982f796a8e1f03bb54e7905 (patch) | |
tree | f5f44081aeba7a00bb69b1ec71f93c31eac12863 /thirdparty/includes/OpenCV/opencv2/flann/lsh_index.h | |
parent | 1fd0dce8d72c4d5869ce5ff4025ac09af603bc0f (diff) | |
download | Scilab2C_fossee_old-c7e9597db39140c1d982f796a8e1f03bb54e7905.tar.gz Scilab2C_fossee_old-c7e9597db39140c1d982f796a8e1f03bb54e7905.tar.bz2 Scilab2C_fossee_old-c7e9597db39140c1d982f796a8e1f03bb54e7905.zip |
Fixed float.h issue. OpenCV with built libraries working for linux x64
Diffstat (limited to 'thirdparty/includes/OpenCV/opencv2/flann/lsh_index.h')
-rw-r--r-- | thirdparty/includes/OpenCV/opencv2/flann/lsh_index.h | 420 |
1 files changed, 420 insertions, 0 deletions
diff --git a/thirdparty/includes/OpenCV/opencv2/flann/lsh_index.h b/thirdparty/includes/OpenCV/opencv2/flann/lsh_index.h new file mode 100644 index 0000000..2b89337 --- /dev/null +++ b/thirdparty/includes/OpenCV/opencv2/flann/lsh_index.h @@ -0,0 +1,420 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +/*********************************************************************** + * Author: Vincent Rabaud + *************************************************************************/ + +#ifndef OPENCV_FLANN_LSH_INDEX_H_ +#define OPENCV_FLANN_LSH_INDEX_H_ + +#include <algorithm> +#include <cassert> +#include <cstring> +#include <map> +#include <vector> + +#include "general.h" +#include "nn_index.h" +#include "matrix.h" +#include "result_set.h" +#include "heap.h" +#include "lsh_table.h" +#include "allocator.h" +#include "random.h" +#include "saving.h" + +namespace cvflann +{ + +struct LshIndexParams : public IndexParams +{ + LshIndexParams(unsigned int table_number = 12, unsigned int key_size = 20, unsigned int multi_probe_level = 2) + { + (* this)["algorithm"] = FLANN_INDEX_LSH; + // The number of hash tables to use + (*this)["table_number"] = table_number; + // The length of the key in the hash tables + (*this)["key_size"] = key_size; + // Number of levels to use in multi-probe (0 for standard LSH) + (*this)["multi_probe_level"] = multi_probe_level; + } +}; + +/** + * Randomized kd-tree index + * + * Contains the k-d trees and other information for indexing a set of points + * for nearest-neighbor matching. + */ +template<typename Distance> +class LshIndex : public NNIndex<Distance> +{ +public: + typedef typename Distance::ElementType ElementType; + typedef typename Distance::ResultType DistanceType; + + /** Constructor + * @param input_data dataset with the input features + * @param params parameters passed to the LSH algorithm + * @param d the distance used + */ + LshIndex(const Matrix<ElementType>& input_data, const IndexParams& params = LshIndexParams(), + Distance d = Distance()) : + dataset_(input_data), index_params_(params), distance_(d) + { + // cv::flann::IndexParams sets integer params as 'int', so it is used with get_param + // in place of 'unsigned int' + table_number_ = (unsigned int)get_param<int>(index_params_,"table_number",12); + key_size_ = (unsigned int)get_param<int>(index_params_,"key_size",20); + multi_probe_level_ = (unsigned int)get_param<int>(index_params_,"multi_probe_level",2); + + feature_size_ = (unsigned)dataset_.cols; + fill_xor_mask(0, key_size_, multi_probe_level_, xor_masks_); + } + + + LshIndex(const LshIndex&); + LshIndex& operator=(const LshIndex&); + + /** + * Implementation for the LSH addable indexes after that. + * @param wholeData whole dataset with the input features + * @param additionalData additional dataset with the input features + */ + void addIndex(const Matrix<ElementType>& wholeData, const Matrix<ElementType>& additionalData) + { + tables_.resize(table_number_); + for (unsigned int i = 0; i < table_number_; ++i) { + lsh::LshTable<ElementType>& table = tables_[i]; + // Add the features to the table with indexed offset + table.add((int)(wholeData.rows - additionalData.rows), additionalData); + } + dataset_ = wholeData; + } + + /** + * Builds the index + */ + void buildIndex() + { + std::vector<size_t> indices(feature_size_ * CHAR_BIT); + + tables_.resize(table_number_); + for (unsigned int i = 0; i < table_number_; ++i) { + + //re-initialize the random indices table that the LshTable will use to pick its sub-dimensions + if( (indices.size() == feature_size_ * CHAR_BIT) || (indices.size() < key_size_) ) + { + indices.resize( feature_size_ * CHAR_BIT ); + for (size_t j = 0; j < feature_size_ * CHAR_BIT; ++j) + indices[j] = j; + std::random_shuffle(indices.begin(), indices.end()); + } + + lsh::LshTable<ElementType>& table = tables_[i]; + table = lsh::LshTable<ElementType>(feature_size_, key_size_, indices); + + // Add the features to the table with offset 0 + table.add(0, dataset_); + } + } + + flann_algorithm_t getType() const + { + return FLANN_INDEX_LSH; + } + + + void saveIndex(FILE* stream) + { + save_value(stream,table_number_); + save_value(stream,key_size_); + save_value(stream,multi_probe_level_); + save_value(stream, dataset_); + } + + void loadIndex(FILE* stream) + { + load_value(stream, table_number_); + load_value(stream, key_size_); + load_value(stream, multi_probe_level_); + load_value(stream, dataset_); + // Building the index is so fast we can afford not storing it + buildIndex(); + + index_params_["algorithm"] = getType(); + index_params_["table_number"] = table_number_; + index_params_["key_size"] = key_size_; + index_params_["multi_probe_level"] = multi_probe_level_; + } + + /** + * Returns size of index. + */ + size_t size() const + { + return dataset_.rows; + } + + /** + * Returns the length of an index feature. + */ + size_t veclen() const + { + return feature_size_; + } + + /** + * Computes the index memory usage + * Returns: memory used by the index + */ + int usedMemory() const + { + return (int)(dataset_.rows * sizeof(int)); + } + + + IndexParams getParameters() const + { + return index_params_; + } + + /** + * \brief Perform k-nearest neighbor search + * \param[in] queries The query points for which to find the nearest neighbors + * \param[out] indices The indices of the nearest neighbors found + * \param[out] dists Distances to the nearest neighbors found + * \param[in] knn Number of nearest neighbors to return + * \param[in] params Search parameters + */ + virtual void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params) + { + assert(queries.cols == veclen()); + assert(indices.rows >= queries.rows); + assert(dists.rows >= queries.rows); + assert(int(indices.cols) >= knn); + assert(int(dists.cols) >= knn); + + + KNNUniqueResultSet<DistanceType> resultSet(knn); + for (size_t i = 0; i < queries.rows; i++) { + resultSet.clear(); + std::fill_n(indices[i], knn, -1); + std::fill_n(dists[i], knn, std::numeric_limits<DistanceType>::max()); + findNeighbors(resultSet, queries[i], params); + if (get_param(params,"sorted",true)) resultSet.sortAndCopy(indices[i], dists[i], knn); + else resultSet.copy(indices[i], dists[i], knn); + } + } + + + /** + * Find set of nearest neighbors to vec. Their indices are stored inside + * the result object. + * + * Params: + * result = the result object in which the indices of the nearest-neighbors are stored + * vec = the vector for which to search the nearest neighbors + * maxCheck = the maximum number of restarts (in a best-bin-first manner) + */ + void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& /*searchParams*/) + { + getNeighbors(vec, result); + } + +private: + /** Defines the comparator on score and index + */ + typedef std::pair<float, unsigned int> ScoreIndexPair; + struct SortScoreIndexPairOnSecond + { + bool operator()(const ScoreIndexPair& left, const ScoreIndexPair& right) const + { + return left.second < right.second; + } + }; + + /** Fills the different xor masks to use when getting the neighbors in multi-probe LSH + * @param key the key we build neighbors from + * @param lowest_index the lowest index of the bit set + * @param level the multi-probe level we are at + * @param xor_masks all the xor mask + */ + void fill_xor_mask(lsh::BucketKey key, int lowest_index, unsigned int level, + std::vector<lsh::BucketKey>& xor_masks) + { + xor_masks.push_back(key); + if (level == 0) return; + for (int index = lowest_index - 1; index >= 0; --index) { + // Create a new key + lsh::BucketKey new_key = key | (1 << index); + fill_xor_mask(new_key, index, level - 1, xor_masks); + } + } + + /** Performs the approximate nearest-neighbor search. + * @param vec the feature to analyze + * @param do_radius flag indicating if we check the radius too + * @param radius the radius if it is a radius search + * @param do_k flag indicating if we limit the number of nn + * @param k_nn the number of nearest neighbors + * @param checked_average used for debugging + */ + void getNeighbors(const ElementType* vec, bool /*do_radius*/, float radius, bool do_k, unsigned int k_nn, + float& /*checked_average*/) + { + static std::vector<ScoreIndexPair> score_index_heap; + + if (do_k) { + unsigned int worst_score = std::numeric_limits<unsigned int>::max(); + typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin(); + typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end(); + for (; table != table_end; ++table) { + size_t key = table->getKey(vec); + std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin(); + std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end(); + for (; xor_mask != xor_mask_end; ++xor_mask) { + size_t sub_key = key ^ (*xor_mask); + const lsh::Bucket* bucket = table->getBucketFromKey(sub_key); + if (bucket == 0) continue; + + // Go over each descriptor index + std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin(); + std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end(); + DistanceType hamming_distance; + + // Process the rest of the candidates + for (; training_index < last_training_index; ++training_index) { + hamming_distance = distance_(vec, dataset_[*training_index], dataset_.cols); + + if (hamming_distance < worst_score) { + // Insert the new element + score_index_heap.push_back(ScoreIndexPair(hamming_distance, training_index)); + std::push_heap(score_index_heap.begin(), score_index_heap.end()); + + if (score_index_heap.size() > (unsigned int)k_nn) { + // Remove the highest distance value as we have too many elements + std::pop_heap(score_index_heap.begin(), score_index_heap.end()); + score_index_heap.pop_back(); + // Keep track of the worst score + worst_score = score_index_heap.front().first; + } + } + } + } + } + } + else { + typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin(); + typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end(); + for (; table != table_end; ++table) { + size_t key = table->getKey(vec); + std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin(); + std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end(); + for (; xor_mask != xor_mask_end; ++xor_mask) { + size_t sub_key = key ^ (*xor_mask); + const lsh::Bucket* bucket = table->getBucketFromKey(sub_key); + if (bucket == 0) continue; + + // Go over each descriptor index + std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin(); + std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end(); + DistanceType hamming_distance; + + // Process the rest of the candidates + for (; training_index < last_training_index; ++training_index) { + // Compute the Hamming distance + hamming_distance = distance_(vec, dataset_[*training_index], dataset_.cols); + if (hamming_distance < radius) score_index_heap.push_back(ScoreIndexPair(hamming_distance, training_index)); + } + } + } + } + } + + /** Performs the approximate nearest-neighbor search. + * This is a slower version than the above as it uses the ResultSet + * @param vec the feature to analyze + */ + void getNeighbors(const ElementType* vec, ResultSet<DistanceType>& result) + { + typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin(); + typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end(); + for (; table != table_end; ++table) { + size_t key = table->getKey(vec); + std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin(); + std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end(); + for (; xor_mask != xor_mask_end; ++xor_mask) { + size_t sub_key = key ^ (*xor_mask); + const lsh::Bucket* bucket = table->getBucketFromKey((lsh::BucketKey)sub_key); + if (bucket == 0) continue; + + // Go over each descriptor index + std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin(); + std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end(); + DistanceType hamming_distance; + + // Process the rest of the candidates + for (; training_index < last_training_index; ++training_index) { + // Compute the Hamming distance + hamming_distance = distance_(vec, dataset_[*training_index], (int)dataset_.cols); + result.addPoint(hamming_distance, *training_index); + } + } + } + } + + /** The different hash tables */ + std::vector<lsh::LshTable<ElementType> > tables_; + + /** The data the LSH tables where built from */ + Matrix<ElementType> dataset_; + + /** The size of the features (as ElementType[]) */ + unsigned int feature_size_; + + IndexParams index_params_; + + /** table number */ + unsigned int table_number_; + /** key size */ + unsigned int key_size_; + /** How far should we look for neighbors in multi-probe LSH */ + unsigned int multi_probe_level_; + + /** The XOR masks to apply to a key to get the neighboring buckets */ + std::vector<lsh::BucketKey> xor_masks_; + + Distance distance_; +}; +} + +#endif //OPENCV_FLANN_LSH_INDEX_H_ |