diff options
author | siddhu8990 | 2017-04-24 14:08:37 +0530 |
---|---|---|
committer | siddhu8990 | 2017-04-24 14:08:37 +0530 |
commit | c7e9597db39140c1d982f796a8e1f03bb54e7905 (patch) | |
tree | f5f44081aeba7a00bb69b1ec71f93c31eac12863 /thirdparty/includes/OpenCV/opencv2/flann/kdtree_index.h | |
parent | 1fd0dce8d72c4d5869ce5ff4025ac09af603bc0f (diff) | |
download | Scilab2C_fossee_old-c7e9597db39140c1d982f796a8e1f03bb54e7905.tar.gz Scilab2C_fossee_old-c7e9597db39140c1d982f796a8e1f03bb54e7905.tar.bz2 Scilab2C_fossee_old-c7e9597db39140c1d982f796a8e1f03bb54e7905.zip |
Fixed float.h issue. OpenCV with built libraries working for linux x64
Diffstat (limited to 'thirdparty/includes/OpenCV/opencv2/flann/kdtree_index.h')
-rw-r--r-- | thirdparty/includes/OpenCV/opencv2/flann/kdtree_index.h | 628 |
1 files changed, 628 insertions, 0 deletions
diff --git a/thirdparty/includes/OpenCV/opencv2/flann/kdtree_index.h b/thirdparty/includes/OpenCV/opencv2/flann/kdtree_index.h new file mode 100644 index 0000000..1b8af4a --- /dev/null +++ b/thirdparty/includes/OpenCV/opencv2/flann/kdtree_index.h @@ -0,0 +1,628 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_KDTREE_INDEX_H_ +#define OPENCV_FLANN_KDTREE_INDEX_H_ + +#include <algorithm> +#include <map> +#include <cassert> +#include <cstring> + +#include "general.h" +#include "nn_index.h" +#include "dynamic_bitset.h" +#include "matrix.h" +#include "result_set.h" +#include "heap.h" +#include "allocator.h" +#include "random.h" +#include "saving.h" + + +namespace cvflann +{ + +struct KDTreeIndexParams : public IndexParams +{ + KDTreeIndexParams(int trees = 4) + { + (*this)["algorithm"] = FLANN_INDEX_KDTREE; + (*this)["trees"] = trees; + } +}; + + +/** + * Randomized kd-tree index + * + * Contains the k-d trees and other information for indexing a set of points + * for nearest-neighbor matching. + */ +template <typename Distance> +class KDTreeIndex : public NNIndex<Distance> +{ +public: + typedef typename Distance::ElementType ElementType; + typedef typename Distance::ResultType DistanceType; + + + /** + * KDTree constructor + * + * Params: + * inputData = dataset with the input features + * params = parameters passed to the kdtree algorithm + */ + KDTreeIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KDTreeIndexParams(), + Distance d = Distance() ) : + dataset_(inputData), index_params_(params), distance_(d) + { + size_ = dataset_.rows; + veclen_ = dataset_.cols; + + trees_ = get_param(index_params_,"trees",4); + tree_roots_ = new NodePtr[trees_]; + + // Create a permutable array of indices to the input vectors. + vind_.resize(size_); + for (size_t i = 0; i < size_; ++i) { + vind_[i] = int(i); + } + + mean_ = new DistanceType[veclen_]; + var_ = new DistanceType[veclen_]; + } + + + KDTreeIndex(const KDTreeIndex&); + KDTreeIndex& operator=(const KDTreeIndex&); + + /** + * Standard destructor + */ + ~KDTreeIndex() + { + if (tree_roots_!=NULL) { + delete[] tree_roots_; + } + delete[] mean_; + delete[] var_; + } + + /** + * Dummy implementation for other algorithms of addable indexes after that. + */ + void addIndex(const Matrix<ElementType>& /*wholeData*/, const Matrix<ElementType>& /*additionalData*/) + { + } + + /** + * Builds the index + */ + void buildIndex() + { + /* Construct the randomized trees. */ + for (int i = 0; i < trees_; i++) { + /* Randomize the order of vectors to allow for unbiased sampling. */ + std::random_shuffle(vind_.begin(), vind_.end()); + tree_roots_[i] = divideTree(&vind_[0], int(size_) ); + } + } + + + flann_algorithm_t getType() const + { + return FLANN_INDEX_KDTREE; + } + + + void saveIndex(FILE* stream) + { + save_value(stream, trees_); + for (int i=0; i<trees_; ++i) { + save_tree(stream, tree_roots_[i]); + } + } + + + + void loadIndex(FILE* stream) + { + load_value(stream, trees_); + if (tree_roots_!=NULL) { + delete[] tree_roots_; + } + tree_roots_ = new NodePtr[trees_]; + for (int i=0; i<trees_; ++i) { + load_tree(stream,tree_roots_[i]); + } + + index_params_["algorithm"] = getType(); + index_params_["trees"] = tree_roots_; + } + + /** + * Returns size of index. + */ + size_t size() const + { + return size_; + } + + /** + * Returns the length of an index feature. + */ + size_t veclen() const + { + return veclen_; + } + + /** + * Computes the inde memory usage + * Returns: memory used by the index + */ + int usedMemory() const + { + return int(pool_.usedMemory+pool_.wastedMemory+dataset_.rows*sizeof(int)); // pool memory and vind array memory + } + + /** + * Find set of nearest neighbors to vec. Their indices are stored inside + * the result object. + * + * Params: + * result = the result object in which the indices of the nearest-neighbors are stored + * vec = the vector for which to search the nearest neighbors + * maxCheck = the maximum number of restarts (in a best-bin-first manner) + */ + void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) + { + int maxChecks = get_param(searchParams,"checks", 32); + float epsError = 1+get_param(searchParams,"eps",0.0f); + + if (maxChecks==FLANN_CHECKS_UNLIMITED) { + getExactNeighbors(result, vec, epsError); + } + else { + getNeighbors(result, vec, maxChecks, epsError); + } + } + + IndexParams getParameters() const + { + return index_params_; + } + +private: + + + /*--------------------- Internal Data Structures --------------------------*/ + struct Node + { + /** + * Dimension used for subdivision. + */ + int divfeat; + /** + * The values used for subdivision. + */ + DistanceType divval; + /** + * The child nodes. + */ + Node* child1, * child2; + }; + typedef Node* NodePtr; + typedef BranchStruct<NodePtr, DistanceType> BranchSt; + typedef BranchSt* Branch; + + + + void save_tree(FILE* stream, NodePtr tree) + { + save_value(stream, *tree); + if (tree->child1!=NULL) { + save_tree(stream, tree->child1); + } + if (tree->child2!=NULL) { + save_tree(stream, tree->child2); + } + } + + + void load_tree(FILE* stream, NodePtr& tree) + { + tree = pool_.allocate<Node>(); + load_value(stream, *tree); + if (tree->child1!=NULL) { + load_tree(stream, tree->child1); + } + if (tree->child2!=NULL) { + load_tree(stream, tree->child2); + } + } + + + /** + * Create a tree node that subdivides the list of vecs from vind[first] + * to vind[last]. The routine is called recursively on each sublist. + * Place a pointer to this new tree node in the location pTree. + * + * Params: pTree = the new node to create + * first = index of the first vector + * last = index of the last vector + */ + NodePtr divideTree(int* ind, int count) + { + NodePtr node = pool_.allocate<Node>(); // allocate memory + + /* If too few exemplars remain, then make this a leaf node. */ + if ( count == 1) { + node->child1 = node->child2 = NULL; /* Mark as leaf node. */ + node->divfeat = *ind; /* Store index of this vec. */ + } + else { + int idx; + int cutfeat; + DistanceType cutval; + meanSplit(ind, count, idx, cutfeat, cutval); + + node->divfeat = cutfeat; + node->divval = cutval; + node->child1 = divideTree(ind, idx); + node->child2 = divideTree(ind+idx, count-idx); + } + + return node; + } + + + /** + * Choose which feature to use in order to subdivide this set of vectors. + * Make a random choice among those with the highest variance, and use + * its variance as the threshold value. + */ + void meanSplit(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval) + { + memset(mean_,0,veclen_*sizeof(DistanceType)); + memset(var_,0,veclen_*sizeof(DistanceType)); + + /* Compute mean values. Only the first SAMPLE_MEAN values need to be + sampled to get a good estimate. + */ + int cnt = std::min((int)SAMPLE_MEAN+1, count); + for (int j = 0; j < cnt; ++j) { + ElementType* v = dataset_[ind[j]]; + for (size_t k=0; k<veclen_; ++k) { + mean_[k] += v[k]; + } + } + for (size_t k=0; k<veclen_; ++k) { + mean_[k] /= cnt; + } + + /* Compute variances (no need to divide by count). */ + for (int j = 0; j < cnt; ++j) { + ElementType* v = dataset_[ind[j]]; + for (size_t k=0; k<veclen_; ++k) { + DistanceType dist = v[k] - mean_[k]; + var_[k] += dist * dist; + } + } + /* Select one of the highest variance indices at random. */ + cutfeat = selectDivision(var_); + cutval = mean_[cutfeat]; + + int lim1, lim2; + planeSplit(ind, count, cutfeat, cutval, lim1, lim2); + + if (lim1>count/2) index = lim1; + else if (lim2<count/2) index = lim2; + else index = count/2; + + /* If either list is empty, it means that all remaining features + * are identical. Split in the middle to maintain a balanced tree. + */ + if ((lim1==count)||(lim2==0)) index = count/2; + } + + + /** + * Select the top RAND_DIM largest values from v and return the index of + * one of these selected at random. + */ + int selectDivision(DistanceType* v) + { + int num = 0; + size_t topind[RAND_DIM]; + + /* Create a list of the indices of the top RAND_DIM values. */ + for (size_t i = 0; i < veclen_; ++i) { + if ((num < RAND_DIM)||(v[i] > v[topind[num-1]])) { + /* Put this element at end of topind. */ + if (num < RAND_DIM) { + topind[num++] = i; /* Add to list. */ + } + else { + topind[num-1] = i; /* Replace last element. */ + } + /* Bubble end value down to right location by repeated swapping. */ + int j = num - 1; + while (j > 0 && v[topind[j]] > v[topind[j-1]]) { + std::swap(topind[j], topind[j-1]); + --j; + } + } + } + /* Select a random integer in range [0,num-1], and return that index. */ + int rnd = rand_int(num); + return (int)topind[rnd]; + } + + + /** + * Subdivide the list of points by a plane perpendicular on axe corresponding + * to the 'cutfeat' dimension at 'cutval' position. + * + * On return: + * dataset[ind[0..lim1-1]][cutfeat]<cutval + * dataset[ind[lim1..lim2-1]][cutfeat]==cutval + * dataset[ind[lim2..count]][cutfeat]>cutval + */ + void planeSplit(int* ind, int count, int cutfeat, DistanceType cutval, int& lim1, int& lim2) + { + /* Move vector indices for left subtree to front of list. */ + int left = 0; + int right = count-1; + for (;; ) { + while (left<=right && dataset_[ind[left]][cutfeat]<cutval) ++left; + while (left<=right && dataset_[ind[right]][cutfeat]>=cutval) --right; + if (left>right) break; + std::swap(ind[left], ind[right]); ++left; --right; + } + lim1 = left; + right = count-1; + for (;; ) { + while (left<=right && dataset_[ind[left]][cutfeat]<=cutval) ++left; + while (left<=right && dataset_[ind[right]][cutfeat]>cutval) --right; + if (left>right) break; + std::swap(ind[left], ind[right]); ++left; --right; + } + lim2 = left; + } + + /** + * Performs an exact nearest neighbor search. The exact search performs a full + * traversal of the tree. + */ + void getExactNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, float epsError) + { + // checkID -= 1; /* Set a different unique ID for each search. */ + + if (trees_ > 1) { + fprintf(stderr,"It doesn't make any sense to use more than one tree for exact search"); + } + if (trees_>0) { + searchLevelExact(result, vec, tree_roots_[0], 0.0, epsError); + } + assert(result.full()); + } + + /** + * Performs the approximate nearest-neighbor search. The search is approximate + * because the tree traversal is abandoned after a given number of descends in + * the tree. + */ + void getNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, int maxCheck, float epsError) + { + int i; + BranchSt branch; + + int checkCount = 0; + Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_); + DynamicBitset checked(size_); + + /* Search once through each tree down to root. */ + for (i = 0; i < trees_; ++i) { + searchLevel(result, vec, tree_roots_[i], 0, checkCount, maxCheck, epsError, heap, checked); + } + + /* Keep searching other branches from heap until finished. */ + while ( heap->popMin(branch) && (checkCount < maxCheck || !result.full() )) { + searchLevel(result, vec, branch.node, branch.mindist, checkCount, maxCheck, epsError, heap, checked); + } + + delete heap; + + assert(result.full()); + } + + + /** + * Search starting from a given node of the tree. Based on any mismatches at + * higher levels, all exemplars below this level must have a distance of + * at least "mindistsq". + */ + void searchLevel(ResultSet<DistanceType>& result_set, const ElementType* vec, NodePtr node, DistanceType mindist, int& checkCount, int maxCheck, + float epsError, Heap<BranchSt>* heap, DynamicBitset& checked) + { + if (result_set.worstDist()<mindist) { + // printf("Ignoring branch, too far\n"); + return; + } + + /* If this is a leaf node, then do check and return. */ + if ((node->child1 == NULL)&&(node->child2 == NULL)) { + /* Do not check same node more than once when searching multiple trees. + Once a vector is checked, we set its location in vind to the + current checkID. + */ + int index = node->divfeat; + if ( checked.test(index) || ((checkCount>=maxCheck)&& result_set.full()) ) return; + checked.set(index); + checkCount++; + + DistanceType dist = distance_(dataset_[index], vec, veclen_); + result_set.addPoint(dist,index); + + return; + } + + /* Which child branch should be taken first? */ + ElementType val = vec[node->divfeat]; + DistanceType diff = val - node->divval; + NodePtr bestChild = (diff < 0) ? node->child1 : node->child2; + NodePtr otherChild = (diff < 0) ? node->child2 : node->child1; + + /* Create a branch record for the branch not taken. Add distance + of this feature boundary (we don't attempt to correct for any + use of this feature in a parent node, which is unlikely to + happen and would have only a small effect). Don't bother + adding more branches to heap after halfway point, as cost of + adding exceeds their value. + */ + + DistanceType new_distsq = mindist + distance_.accum_dist(val, node->divval, node->divfeat); + // if (2 * checkCount < maxCheck || !result.full()) { + if ((new_distsq*epsError < result_set.worstDist())|| !result_set.full()) { + heap->insert( BranchSt(otherChild, new_distsq) ); + } + + /* Call recursively to search next level down. */ + searchLevel(result_set, vec, bestChild, mindist, checkCount, maxCheck, epsError, heap, checked); + } + + /** + * Performs an exact search in the tree starting from a node. + */ + void searchLevelExact(ResultSet<DistanceType>& result_set, const ElementType* vec, const NodePtr node, DistanceType mindist, const float epsError) + { + /* If this is a leaf node, then do check and return. */ + if ((node->child1 == NULL)&&(node->child2 == NULL)) { + int index = node->divfeat; + DistanceType dist = distance_(dataset_[index], vec, veclen_); + result_set.addPoint(dist,index); + return; + } + + /* Which child branch should be taken first? */ + ElementType val = vec[node->divfeat]; + DistanceType diff = val - node->divval; + NodePtr bestChild = (diff < 0) ? node->child1 : node->child2; + NodePtr otherChild = (diff < 0) ? node->child2 : node->child1; + + /* Create a branch record for the branch not taken. Add distance + of this feature boundary (we don't attempt to correct for any + use of this feature in a parent node, which is unlikely to + happen and would have only a small effect). Don't bother + adding more branches to heap after halfway point, as cost of + adding exceeds their value. + */ + + DistanceType new_distsq = mindist + distance_.accum_dist(val, node->divval, node->divfeat); + + /* Call recursively to search next level down. */ + searchLevelExact(result_set, vec, bestChild, mindist, epsError); + + if (new_distsq*epsError<=result_set.worstDist()) { + searchLevelExact(result_set, vec, otherChild, new_distsq, epsError); + } + } + + +private: + + enum + { + /** + * To improve efficiency, only SAMPLE_MEAN random values are used to + * compute the mean and variance at each level when building a tree. + * A value of 100 seems to perform as well as using all values. + */ + SAMPLE_MEAN = 100, + /** + * Top random dimensions to consider + * + * When creating random trees, the dimension on which to subdivide is + * selected at random from among the top RAND_DIM dimensions with the + * highest variance. A value of 5 works well. + */ + RAND_DIM=5 + }; + + + /** + * Number of randomized trees that are used + */ + int trees_; + + /** + * Array of indices to vectors in the dataset. + */ + std::vector<int> vind_; + + /** + * The dataset used by this index + */ + const Matrix<ElementType> dataset_; + + IndexParams index_params_; + + size_t size_; + size_t veclen_; + + + DistanceType* mean_; + DistanceType* var_; + + + /** + * Array of k-d trees used to find neighbours. + */ + NodePtr* tree_roots_; + + /** + * Pooled memory allocator. + * + * Using a pooled memory allocator is more efficient + * than allocating memory directly when there is a large + * number small of memory allocations. + */ + PooledAllocator pool_; + + Distance distance_; + + +}; // class KDTreeForest + +} + +#endif //OPENCV_FLANN_KDTREE_INDEX_H_ |