summaryrefslogtreecommitdiff
path: root/src/fortran/lapack/zlatrd.f
diff options
context:
space:
mode:
authorSandeep Gupta2017-06-18 23:55:40 +0530
committerSandeep Gupta2017-06-18 23:55:40 +0530
commit277d1edfa17bf3719d90ddbac8e31f6181e952c3 (patch)
tree0661f1f52af0a0fd654edd4984c30e57037303c6 /src/fortran/lapack/zlatrd.f
downloadScilab2C_fossee_old-277d1edfa17bf3719d90ddbac8e31f6181e952c3.tar.gz
Scilab2C_fossee_old-277d1edfa17bf3719d90ddbac8e31f6181e952c3.tar.bz2
Scilab2C_fossee_old-277d1edfa17bf3719d90ddbac8e31f6181e952c3.zip
First commit
Diffstat (limited to 'src/fortran/lapack/zlatrd.f')
-rw-r--r--src/fortran/lapack/zlatrd.f279
1 files changed, 279 insertions, 0 deletions
diff --git a/src/fortran/lapack/zlatrd.f b/src/fortran/lapack/zlatrd.f
new file mode 100644
index 0000000..5fef7b5
--- /dev/null
+++ b/src/fortran/lapack/zlatrd.f
@@ -0,0 +1,279 @@
+ SUBROUTINE ZLATRD( UPLO, N, NB, A, LDA, E, TAU, W, LDW )
+*
+* -- LAPACK auxiliary routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER UPLO
+ INTEGER LDA, LDW, N, NB
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION E( * )
+ COMPLEX*16 A( LDA, * ), TAU( * ), W( LDW, * )
+* ..
+*
+* Purpose
+* =======
+*
+* ZLATRD reduces NB rows and columns of a complex Hermitian matrix A to
+* Hermitian tridiagonal form by a unitary similarity
+* transformation Q' * A * Q, and returns the matrices V and W which are
+* needed to apply the transformation to the unreduced part of A.
+*
+* If UPLO = 'U', ZLATRD reduces the last NB rows and columns of a
+* matrix, of which the upper triangle is supplied;
+* if UPLO = 'L', ZLATRD reduces the first NB rows and columns of a
+* matrix, of which the lower triangle is supplied.
+*
+* This is an auxiliary routine called by ZHETRD.
+*
+* Arguments
+* =========
+*
+* UPLO (input) CHARACTER*1
+* Specifies whether the upper or lower triangular part of the
+* Hermitian matrix A is stored:
+* = 'U': Upper triangular
+* = 'L': Lower triangular
+*
+* N (input) INTEGER
+* The order of the matrix A.
+*
+* NB (input) INTEGER
+* The number of rows and columns to be reduced.
+*
+* A (input/output) COMPLEX*16 array, dimension (LDA,N)
+* On entry, the Hermitian matrix A. If UPLO = 'U', the leading
+* n-by-n upper triangular part of A contains the upper
+* triangular part of the matrix A, and the strictly lower
+* triangular part of A is not referenced. If UPLO = 'L', the
+* leading n-by-n lower triangular part of A contains the lower
+* triangular part of the matrix A, and the strictly upper
+* triangular part of A is not referenced.
+* On exit:
+* if UPLO = 'U', the last NB columns have been reduced to
+* tridiagonal form, with the diagonal elements overwriting
+* the diagonal elements of A; the elements above the diagonal
+* with the array TAU, represent the unitary matrix Q as a
+* product of elementary reflectors;
+* if UPLO = 'L', the first NB columns have been reduced to
+* tridiagonal form, with the diagonal elements overwriting
+* the diagonal elements of A; the elements below the diagonal
+* with the array TAU, represent the unitary matrix Q as a
+* product of elementary reflectors.
+* See Further Details.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,N).
+*
+* E (output) DOUBLE PRECISION array, dimension (N-1)
+* If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal
+* elements of the last NB columns of the reduced matrix;
+* if UPLO = 'L', E(1:nb) contains the subdiagonal elements of
+* the first NB columns of the reduced matrix.
+*
+* TAU (output) COMPLEX*16 array, dimension (N-1)
+* The scalar factors of the elementary reflectors, stored in
+* TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'.
+* See Further Details.
+*
+* W (output) COMPLEX*16 array, dimension (LDW,NB)
+* The n-by-nb matrix W required to update the unreduced part
+* of A.
+*
+* LDW (input) INTEGER
+* The leading dimension of the array W. LDW >= max(1,N).
+*
+* Further Details
+* ===============
+*
+* If UPLO = 'U', the matrix Q is represented as a product of elementary
+* reflectors
+*
+* Q = H(n) H(n-1) . . . H(n-nb+1).
+*
+* Each H(i) has the form
+*
+* H(i) = I - tau * v * v'
+*
+* where tau is a complex scalar, and v is a complex vector with
+* v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i),
+* and tau in TAU(i-1).
+*
+* If UPLO = 'L', the matrix Q is represented as a product of elementary
+* reflectors
+*
+* Q = H(1) H(2) . . . H(nb).
+*
+* Each H(i) has the form
+*
+* H(i) = I - tau * v * v'
+*
+* where tau is a complex scalar, and v is a complex vector with
+* v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
+* and tau in TAU(i).
+*
+* The elements of the vectors v together form the n-by-nb matrix V
+* which is needed, with W, to apply the transformation to the unreduced
+* part of the matrix, using a Hermitian rank-2k update of the form:
+* A := A - V*W' - W*V'.
+*
+* The contents of A on exit are illustrated by the following examples
+* with n = 5 and nb = 2:
+*
+* if UPLO = 'U': if UPLO = 'L':
+*
+* ( a a a v4 v5 ) ( d )
+* ( a a v4 v5 ) ( 1 d )
+* ( a 1 v5 ) ( v1 1 a )
+* ( d 1 ) ( v1 v2 a a )
+* ( d ) ( v1 v2 a a a )
+*
+* where d denotes a diagonal element of the reduced matrix, a denotes
+* an element of the original matrix that is unchanged, and vi denotes
+* an element of the vector defining H(i).
+*
+* =====================================================================
+*
+* .. Parameters ..
+ COMPLEX*16 ZERO, ONE, HALF
+ PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ),
+ $ ONE = ( 1.0D+0, 0.0D+0 ),
+ $ HALF = ( 0.5D+0, 0.0D+0 ) )
+* ..
+* .. Local Scalars ..
+ INTEGER I, IW
+ COMPLEX*16 ALPHA
+* ..
+* .. External Subroutines ..
+ EXTERNAL ZAXPY, ZGEMV, ZHEMV, ZLACGV, ZLARFG, ZSCAL
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ COMPLEX*16 ZDOTC
+ EXTERNAL LSAME, ZDOTC
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC DBLE, MIN
+* ..
+* .. Executable Statements ..
+*
+* Quick return if possible
+*
+ IF( N.LE.0 )
+ $ RETURN
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+*
+* Reduce last NB columns of upper triangle
+*
+ DO 10 I = N, N - NB + 1, -1
+ IW = I - N + NB
+ IF( I.LT.N ) THEN
+*
+* Update A(1:i,i)
+*
+ A( I, I ) = DBLE( A( I, I ) )
+ CALL ZLACGV( N-I, W( I, IW+1 ), LDW )
+ CALL ZGEMV( 'No transpose', I, N-I, -ONE, A( 1, I+1 ),
+ $ LDA, W( I, IW+1 ), LDW, ONE, A( 1, I ), 1 )
+ CALL ZLACGV( N-I, W( I, IW+1 ), LDW )
+ CALL ZLACGV( N-I, A( I, I+1 ), LDA )
+ CALL ZGEMV( 'No transpose', I, N-I, -ONE, W( 1, IW+1 ),
+ $ LDW, A( I, I+1 ), LDA, ONE, A( 1, I ), 1 )
+ CALL ZLACGV( N-I, A( I, I+1 ), LDA )
+ A( I, I ) = DBLE( A( I, I ) )
+ END IF
+ IF( I.GT.1 ) THEN
+*
+* Generate elementary reflector H(i) to annihilate
+* A(1:i-2,i)
+*
+ ALPHA = A( I-1, I )
+ CALL ZLARFG( I-1, ALPHA, A( 1, I ), 1, TAU( I-1 ) )
+ E( I-1 ) = ALPHA
+ A( I-1, I ) = ONE
+*
+* Compute W(1:i-1,i)
+*
+ CALL ZHEMV( 'Upper', I-1, ONE, A, LDA, A( 1, I ), 1,
+ $ ZERO, W( 1, IW ), 1 )
+ IF( I.LT.N ) THEN
+ CALL ZGEMV( 'Conjugate transpose', I-1, N-I, ONE,
+ $ W( 1, IW+1 ), LDW, A( 1, I ), 1, ZERO,
+ $ W( I+1, IW ), 1 )
+ CALL ZGEMV( 'No transpose', I-1, N-I, -ONE,
+ $ A( 1, I+1 ), LDA, W( I+1, IW ), 1, ONE,
+ $ W( 1, IW ), 1 )
+ CALL ZGEMV( 'Conjugate transpose', I-1, N-I, ONE,
+ $ A( 1, I+1 ), LDA, A( 1, I ), 1, ZERO,
+ $ W( I+1, IW ), 1 )
+ CALL ZGEMV( 'No transpose', I-1, N-I, -ONE,
+ $ W( 1, IW+1 ), LDW, W( I+1, IW ), 1, ONE,
+ $ W( 1, IW ), 1 )
+ END IF
+ CALL ZSCAL( I-1, TAU( I-1 ), W( 1, IW ), 1 )
+ ALPHA = -HALF*TAU( I-1 )*ZDOTC( I-1, W( 1, IW ), 1,
+ $ A( 1, I ), 1 )
+ CALL ZAXPY( I-1, ALPHA, A( 1, I ), 1, W( 1, IW ), 1 )
+ END IF
+*
+ 10 CONTINUE
+ ELSE
+*
+* Reduce first NB columns of lower triangle
+*
+ DO 20 I = 1, NB
+*
+* Update A(i:n,i)
+*
+ A( I, I ) = DBLE( A( I, I ) )
+ CALL ZLACGV( I-1, W( I, 1 ), LDW )
+ CALL ZGEMV( 'No transpose', N-I+1, I-1, -ONE, A( I, 1 ),
+ $ LDA, W( I, 1 ), LDW, ONE, A( I, I ), 1 )
+ CALL ZLACGV( I-1, W( I, 1 ), LDW )
+ CALL ZLACGV( I-1, A( I, 1 ), LDA )
+ CALL ZGEMV( 'No transpose', N-I+1, I-1, -ONE, W( I, 1 ),
+ $ LDW, A( I, 1 ), LDA, ONE, A( I, I ), 1 )
+ CALL ZLACGV( I-1, A( I, 1 ), LDA )
+ A( I, I ) = DBLE( A( I, I ) )
+ IF( I.LT.N ) THEN
+*
+* Generate elementary reflector H(i) to annihilate
+* A(i+2:n,i)
+*
+ ALPHA = A( I+1, I )
+ CALL ZLARFG( N-I, ALPHA, A( MIN( I+2, N ), I ), 1,
+ $ TAU( I ) )
+ E( I ) = ALPHA
+ A( I+1, I ) = ONE
+*
+* Compute W(i+1:n,i)
+*
+ CALL ZHEMV( 'Lower', N-I, ONE, A( I+1, I+1 ), LDA,
+ $ A( I+1, I ), 1, ZERO, W( I+1, I ), 1 )
+ CALL ZGEMV( 'Conjugate transpose', N-I, I-1, ONE,
+ $ W( I+1, 1 ), LDW, A( I+1, I ), 1, ZERO,
+ $ W( 1, I ), 1 )
+ CALL ZGEMV( 'No transpose', N-I, I-1, -ONE, A( I+1, 1 ),
+ $ LDA, W( 1, I ), 1, ONE, W( I+1, I ), 1 )
+ CALL ZGEMV( 'Conjugate transpose', N-I, I-1, ONE,
+ $ A( I+1, 1 ), LDA, A( I+1, I ), 1, ZERO,
+ $ W( 1, I ), 1 )
+ CALL ZGEMV( 'No transpose', N-I, I-1, -ONE, W( I+1, 1 ),
+ $ LDW, W( 1, I ), 1, ONE, W( I+1, I ), 1 )
+ CALL ZSCAL( N-I, TAU( I ), W( I+1, I ), 1 )
+ ALPHA = -HALF*TAU( I )*ZDOTC( N-I, W( I+1, I ), 1,
+ $ A( I+1, I ), 1 )
+ CALL ZAXPY( N-I, ALPHA, A( I+1, I ), 1, W( I+1, I ), 1 )
+ END IF
+*
+ 20 CONTINUE
+ END IF
+*
+ RETURN
+*
+* End of ZLATRD
+*
+ END