summaryrefslogtreecommitdiff
path: root/src/fortran/lapack/zlasr.f
diff options
context:
space:
mode:
authorSiddhesh Wani2015-05-25 14:46:31 +0530
committerSiddhesh Wani2015-05-25 14:46:31 +0530
commitdb464f35f5a10b58d9ed1085e0b462689adee583 (patch)
treede5cdbc71a54765d9fec33414630ae2c8904c9b8 /src/fortran/lapack/zlasr.f
downloadScilab2C_fossee_old-db464f35f5a10b58d9ed1085e0b462689adee583.tar.gz
Scilab2C_fossee_old-db464f35f5a10b58d9ed1085e0b462689adee583.tar.bz2
Scilab2C_fossee_old-db464f35f5a10b58d9ed1085e0b462689adee583.zip
Original Version
Diffstat (limited to 'src/fortran/lapack/zlasr.f')
-rw-r--r--src/fortran/lapack/zlasr.f363
1 files changed, 363 insertions, 0 deletions
diff --git a/src/fortran/lapack/zlasr.f b/src/fortran/lapack/zlasr.f
new file mode 100644
index 0000000..507a20c
--- /dev/null
+++ b/src/fortran/lapack/zlasr.f
@@ -0,0 +1,363 @@
+ SUBROUTINE ZLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA )
+*
+* -- LAPACK auxiliary routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER DIRECT, PIVOT, SIDE
+ INTEGER LDA, M, N
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION C( * ), S( * )
+ COMPLEX*16 A( LDA, * )
+* ..
+*
+* Purpose
+* =======
+*
+* ZLASR applies a sequence of real plane rotations to a complex matrix
+* A, from either the left or the right.
+*
+* When SIDE = 'L', the transformation takes the form
+*
+* A := P*A
+*
+* and when SIDE = 'R', the transformation takes the form
+*
+* A := A*P**T
+*
+* where P is an orthogonal matrix consisting of a sequence of z plane
+* rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R',
+* and P**T is the transpose of P.
+*
+* When DIRECT = 'F' (Forward sequence), then
+*
+* P = P(z-1) * ... * P(2) * P(1)
+*
+* and when DIRECT = 'B' (Backward sequence), then
+*
+* P = P(1) * P(2) * ... * P(z-1)
+*
+* where P(k) is a plane rotation matrix defined by the 2-by-2 rotation
+*
+* R(k) = ( c(k) s(k) )
+* = ( -s(k) c(k) ).
+*
+* When PIVOT = 'V' (Variable pivot), the rotation is performed
+* for the plane (k,k+1), i.e., P(k) has the form
+*
+* P(k) = ( 1 )
+* ( ... )
+* ( 1 )
+* ( c(k) s(k) )
+* ( -s(k) c(k) )
+* ( 1 )
+* ( ... )
+* ( 1 )
+*
+* where R(k) appears as a rank-2 modification to the identity matrix in
+* rows and columns k and k+1.
+*
+* When PIVOT = 'T' (Top pivot), the rotation is performed for the
+* plane (1,k+1), so P(k) has the form
+*
+* P(k) = ( c(k) s(k) )
+* ( 1 )
+* ( ... )
+* ( 1 )
+* ( -s(k) c(k) )
+* ( 1 )
+* ( ... )
+* ( 1 )
+*
+* where R(k) appears in rows and columns 1 and k+1.
+*
+* Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is
+* performed for the plane (k,z), giving P(k) the form
+*
+* P(k) = ( 1 )
+* ( ... )
+* ( 1 )
+* ( c(k) s(k) )
+* ( 1 )
+* ( ... )
+* ( 1 )
+* ( -s(k) c(k) )
+*
+* where R(k) appears in rows and columns k and z. The rotations are
+* performed without ever forming P(k) explicitly.
+*
+* Arguments
+* =========
+*
+* SIDE (input) CHARACTER*1
+* Specifies whether the plane rotation matrix P is applied to
+* A on the left or the right.
+* = 'L': Left, compute A := P*A
+* = 'R': Right, compute A:= A*P**T
+*
+* PIVOT (input) CHARACTER*1
+* Specifies the plane for which P(k) is a plane rotation
+* matrix.
+* = 'V': Variable pivot, the plane (k,k+1)
+* = 'T': Top pivot, the plane (1,k+1)
+* = 'B': Bottom pivot, the plane (k,z)
+*
+* DIRECT (input) CHARACTER*1
+* Specifies whether P is a forward or backward sequence of
+* plane rotations.
+* = 'F': Forward, P = P(z-1)*...*P(2)*P(1)
+* = 'B': Backward, P = P(1)*P(2)*...*P(z-1)
+*
+* M (input) INTEGER
+* The number of rows of the matrix A. If m <= 1, an immediate
+* return is effected.
+*
+* N (input) INTEGER
+* The number of columns of the matrix A. If n <= 1, an
+* immediate return is effected.
+*
+* C (input) DOUBLE PRECISION array, dimension
+* (M-1) if SIDE = 'L'
+* (N-1) if SIDE = 'R'
+* The cosines c(k) of the plane rotations.
+*
+* S (input) DOUBLE PRECISION array, dimension
+* (M-1) if SIDE = 'L'
+* (N-1) if SIDE = 'R'
+* The sines s(k) of the plane rotations. The 2-by-2 plane
+* rotation part of the matrix P(k), R(k), has the form
+* R(k) = ( c(k) s(k) )
+* ( -s(k) c(k) ).
+*
+* A (input/output) COMPLEX*16 array, dimension (LDA,N)
+* The M-by-N matrix A. On exit, A is overwritten by P*A if
+* SIDE = 'R' or by A*P**T if SIDE = 'L'.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,M).
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ONE, ZERO
+ PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
+* ..
+* .. Local Scalars ..
+ INTEGER I, INFO, J
+ DOUBLE PRECISION CTEMP, STEMP
+ COMPLEX*16 TEMP
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL XERBLA
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters
+*
+ INFO = 0
+ IF( .NOT.( LSAME( SIDE, 'L' ) .OR. LSAME( SIDE, 'R' ) ) ) THEN
+ INFO = 1
+ ELSE IF( .NOT.( LSAME( PIVOT, 'V' ) .OR. LSAME( PIVOT,
+ $ 'T' ) .OR. LSAME( PIVOT, 'B' ) ) ) THEN
+ INFO = 2
+ ELSE IF( .NOT.( LSAME( DIRECT, 'F' ) .OR. LSAME( DIRECT, 'B' ) ) )
+ $ THEN
+ INFO = 3
+ ELSE IF( M.LT.0 ) THEN
+ INFO = 4
+ ELSE IF( N.LT.0 ) THEN
+ INFO = 5
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = 9
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZLASR ', INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) )
+ $ RETURN
+ IF( LSAME( SIDE, 'L' ) ) THEN
+*
+* Form P * A
+*
+ IF( LSAME( PIVOT, 'V' ) ) THEN
+ IF( LSAME( DIRECT, 'F' ) ) THEN
+ DO 20 J = 1, M - 1
+ CTEMP = C( J )
+ STEMP = S( J )
+ IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
+ DO 10 I = 1, N
+ TEMP = A( J+1, I )
+ A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I )
+ A( J, I ) = STEMP*TEMP + CTEMP*A( J, I )
+ 10 CONTINUE
+ END IF
+ 20 CONTINUE
+ ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
+ DO 40 J = M - 1, 1, -1
+ CTEMP = C( J )
+ STEMP = S( J )
+ IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
+ DO 30 I = 1, N
+ TEMP = A( J+1, I )
+ A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I )
+ A( J, I ) = STEMP*TEMP + CTEMP*A( J, I )
+ 30 CONTINUE
+ END IF
+ 40 CONTINUE
+ END IF
+ ELSE IF( LSAME( PIVOT, 'T' ) ) THEN
+ IF( LSAME( DIRECT, 'F' ) ) THEN
+ DO 60 J = 2, M
+ CTEMP = C( J-1 )
+ STEMP = S( J-1 )
+ IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
+ DO 50 I = 1, N
+ TEMP = A( J, I )
+ A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I )
+ A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I )
+ 50 CONTINUE
+ END IF
+ 60 CONTINUE
+ ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
+ DO 80 J = M, 2, -1
+ CTEMP = C( J-1 )
+ STEMP = S( J-1 )
+ IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
+ DO 70 I = 1, N
+ TEMP = A( J, I )
+ A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I )
+ A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I )
+ 70 CONTINUE
+ END IF
+ 80 CONTINUE
+ END IF
+ ELSE IF( LSAME( PIVOT, 'B' ) ) THEN
+ IF( LSAME( DIRECT, 'F' ) ) THEN
+ DO 100 J = 1, M - 1
+ CTEMP = C( J )
+ STEMP = S( J )
+ IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
+ DO 90 I = 1, N
+ TEMP = A( J, I )
+ A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP
+ A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP
+ 90 CONTINUE
+ END IF
+ 100 CONTINUE
+ ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
+ DO 120 J = M - 1, 1, -1
+ CTEMP = C( J )
+ STEMP = S( J )
+ IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
+ DO 110 I = 1, N
+ TEMP = A( J, I )
+ A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP
+ A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP
+ 110 CONTINUE
+ END IF
+ 120 CONTINUE
+ END IF
+ END IF
+ ELSE IF( LSAME( SIDE, 'R' ) ) THEN
+*
+* Form A * P'
+*
+ IF( LSAME( PIVOT, 'V' ) ) THEN
+ IF( LSAME( DIRECT, 'F' ) ) THEN
+ DO 140 J = 1, N - 1
+ CTEMP = C( J )
+ STEMP = S( J )
+ IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
+ DO 130 I = 1, M
+ TEMP = A( I, J+1 )
+ A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J )
+ A( I, J ) = STEMP*TEMP + CTEMP*A( I, J )
+ 130 CONTINUE
+ END IF
+ 140 CONTINUE
+ ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
+ DO 160 J = N - 1, 1, -1
+ CTEMP = C( J )
+ STEMP = S( J )
+ IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
+ DO 150 I = 1, M
+ TEMP = A( I, J+1 )
+ A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J )
+ A( I, J ) = STEMP*TEMP + CTEMP*A( I, J )
+ 150 CONTINUE
+ END IF
+ 160 CONTINUE
+ END IF
+ ELSE IF( LSAME( PIVOT, 'T' ) ) THEN
+ IF( LSAME( DIRECT, 'F' ) ) THEN
+ DO 180 J = 2, N
+ CTEMP = C( J-1 )
+ STEMP = S( J-1 )
+ IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
+ DO 170 I = 1, M
+ TEMP = A( I, J )
+ A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 )
+ A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 )
+ 170 CONTINUE
+ END IF
+ 180 CONTINUE
+ ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
+ DO 200 J = N, 2, -1
+ CTEMP = C( J-1 )
+ STEMP = S( J-1 )
+ IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
+ DO 190 I = 1, M
+ TEMP = A( I, J )
+ A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 )
+ A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 )
+ 190 CONTINUE
+ END IF
+ 200 CONTINUE
+ END IF
+ ELSE IF( LSAME( PIVOT, 'B' ) ) THEN
+ IF( LSAME( DIRECT, 'F' ) ) THEN
+ DO 220 J = 1, N - 1
+ CTEMP = C( J )
+ STEMP = S( J )
+ IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
+ DO 210 I = 1, M
+ TEMP = A( I, J )
+ A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP
+ A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP
+ 210 CONTINUE
+ END IF
+ 220 CONTINUE
+ ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
+ DO 240 J = N - 1, 1, -1
+ CTEMP = C( J )
+ STEMP = S( J )
+ IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
+ DO 230 I = 1, M
+ TEMP = A( I, J )
+ A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP
+ A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP
+ 230 CONTINUE
+ END IF
+ 240 CONTINUE
+ END IF
+ END IF
+ END IF
+*
+ RETURN
+*
+* End of ZLASR
+*
+ END