diff options
author | Siddhesh Wani | 2015-05-25 14:46:31 +0530 |
---|---|---|
committer | Siddhesh Wani | 2015-05-25 14:46:31 +0530 |
commit | db464f35f5a10b58d9ed1085e0b462689adee583 (patch) | |
tree | de5cdbc71a54765d9fec33414630ae2c8904c9b8 /src/fortran/lapack/dsptrf.f | |
download | Scilab2C_fossee_old-db464f35f5a10b58d9ed1085e0b462689adee583.tar.gz Scilab2C_fossee_old-db464f35f5a10b58d9ed1085e0b462689adee583.tar.bz2 Scilab2C_fossee_old-db464f35f5a10b58d9ed1085e0b462689adee583.zip |
Original Version
Diffstat (limited to 'src/fortran/lapack/dsptrf.f')
-rw-r--r-- | src/fortran/lapack/dsptrf.f | 547 |
1 files changed, 547 insertions, 0 deletions
diff --git a/src/fortran/lapack/dsptrf.f b/src/fortran/lapack/dsptrf.f new file mode 100644 index 0000000..8b8a918 --- /dev/null +++ b/src/fortran/lapack/dsptrf.f @@ -0,0 +1,547 @@ + SUBROUTINE DSPTRF( UPLO, N, AP, IPIV, INFO ) +* +* -- LAPACK routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + CHARACTER UPLO + INTEGER INFO, N +* .. +* .. Array Arguments .. + INTEGER IPIV( * ) + DOUBLE PRECISION AP( * ) +* .. +* +* Purpose +* ======= +* +* DSPTRF computes the factorization of a real symmetric matrix A stored +* in packed format using the Bunch-Kaufman diagonal pivoting method: +* +* A = U*D*U**T or A = L*D*L**T +* +* where U (or L) is a product of permutation and unit upper (lower) +* triangular matrices, and D is symmetric and block diagonal with +* 1-by-1 and 2-by-2 diagonal blocks. +* +* Arguments +* ========= +* +* UPLO (input) CHARACTER*1 +* = 'U': Upper triangle of A is stored; +* = 'L': Lower triangle of A is stored. +* +* N (input) INTEGER +* The order of the matrix A. N >= 0. +* +* AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) +* On entry, the upper or lower triangle of the symmetric matrix +* A, packed columnwise in a linear array. The j-th column of A +* is stored in the array AP as follows: +* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; +* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. +* +* On exit, the block diagonal matrix D and the multipliers used +* to obtain the factor U or L, stored as a packed triangular +* matrix overwriting A (see below for further details). +* +* IPIV (output) INTEGER array, dimension (N) +* Details of the interchanges and the block structure of D. +* If IPIV(k) > 0, then rows and columns k and IPIV(k) were +* interchanged and D(k,k) is a 1-by-1 diagonal block. +* If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and +* columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) +* is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = +* IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were +* interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. +* +* INFO (output) INTEGER +* = 0: successful exit +* < 0: if INFO = -i, the i-th argument had an illegal value +* > 0: if INFO = i, D(i,i) is exactly zero. The factorization +* has been completed, but the block diagonal matrix D is +* exactly singular, and division by zero will occur if it +* is used to solve a system of equations. +* +* Further Details +* =============== +* +* 5-96 - Based on modifications by J. Lewis, Boeing Computer Services +* Company +* +* If UPLO = 'U', then A = U*D*U', where +* U = P(n)*U(n)* ... *P(k)U(k)* ..., +* i.e., U is a product of terms P(k)*U(k), where k decreases from n to +* 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 +* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as +* defined by IPIV(k), and U(k) is a unit upper triangular matrix, such +* that if the diagonal block D(k) is of order s (s = 1 or 2), then +* +* ( I v 0 ) k-s +* U(k) = ( 0 I 0 ) s +* ( 0 0 I ) n-k +* k-s s n-k +* +* If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). +* If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), +* and A(k,k), and v overwrites A(1:k-2,k-1:k). +* +* If UPLO = 'L', then A = L*D*L', where +* L = P(1)*L(1)* ... *P(k)*L(k)* ..., +* i.e., L is a product of terms P(k)*L(k), where k increases from 1 to +* n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 +* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as +* defined by IPIV(k), and L(k) is a unit lower triangular matrix, such +* that if the diagonal block D(k) is of order s (s = 1 or 2), then +* +* ( I 0 0 ) k-1 +* L(k) = ( 0 I 0 ) s +* ( 0 v I ) n-k-s+1 +* k-1 s n-k-s+1 +* +* If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). +* If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), +* and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO, ONE + PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) + DOUBLE PRECISION EIGHT, SEVTEN + PARAMETER ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 ) +* .. +* .. Local Scalars .. + LOGICAL UPPER + INTEGER I, IMAX, J, JMAX, K, KC, KK, KNC, KP, KPC, + $ KSTEP, KX, NPP + DOUBLE PRECISION ABSAKK, ALPHA, COLMAX, D11, D12, D21, D22, R1, + $ ROWMAX, T, WK, WKM1, WKP1 +* .. +* .. External Functions .. + LOGICAL LSAME + INTEGER IDAMAX + EXTERNAL LSAME, IDAMAX +* .. +* .. External Subroutines .. + EXTERNAL DSCAL, DSPR, DSWAP, XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, MAX, SQRT +* .. +* .. Executable Statements .. +* +* Test the input parameters. +* + INFO = 0 + UPPER = LSAME( UPLO, 'U' ) + IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN + INFO = -1 + ELSE IF( N.LT.0 ) THEN + INFO = -2 + END IF + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'DSPTRF', -INFO ) + RETURN + END IF +* +* Initialize ALPHA for use in choosing pivot block size. +* + ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT +* + IF( UPPER ) THEN +* +* Factorize A as U*D*U' using the upper triangle of A +* +* K is the main loop index, decreasing from N to 1 in steps of +* 1 or 2 +* + K = N + KC = ( N-1 )*N / 2 + 1 + 10 CONTINUE + KNC = KC +* +* If K < 1, exit from loop +* + IF( K.LT.1 ) + $ GO TO 110 + KSTEP = 1 +* +* Determine rows and columns to be interchanged and whether +* a 1-by-1 or 2-by-2 pivot block will be used +* + ABSAKK = ABS( AP( KC+K-1 ) ) +* +* IMAX is the row-index of the largest off-diagonal element in +* column K, and COLMAX is its absolute value +* + IF( K.GT.1 ) THEN + IMAX = IDAMAX( K-1, AP( KC ), 1 ) + COLMAX = ABS( AP( KC+IMAX-1 ) ) + ELSE + COLMAX = ZERO + END IF +* + IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN +* +* Column K is zero: set INFO and continue +* + IF( INFO.EQ.0 ) + $ INFO = K + KP = K + ELSE + IF( ABSAKK.GE.ALPHA*COLMAX ) THEN +* +* no interchange, use 1-by-1 pivot block +* + KP = K + ELSE +* +* JMAX is the column-index of the largest off-diagonal +* element in row IMAX, and ROWMAX is its absolute value +* + ROWMAX = ZERO + JMAX = IMAX + KX = IMAX*( IMAX+1 ) / 2 + IMAX + DO 20 J = IMAX + 1, K + IF( ABS( AP( KX ) ).GT.ROWMAX ) THEN + ROWMAX = ABS( AP( KX ) ) + JMAX = J + END IF + KX = KX + J + 20 CONTINUE + KPC = ( IMAX-1 )*IMAX / 2 + 1 + IF( IMAX.GT.1 ) THEN + JMAX = IDAMAX( IMAX-1, AP( KPC ), 1 ) + ROWMAX = MAX( ROWMAX, ABS( AP( KPC+JMAX-1 ) ) ) + END IF +* + IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN +* +* no interchange, use 1-by-1 pivot block +* + KP = K + ELSE IF( ABS( AP( KPC+IMAX-1 ) ).GE.ALPHA*ROWMAX ) THEN +* +* interchange rows and columns K and IMAX, use 1-by-1 +* pivot block +* + KP = IMAX + ELSE +* +* interchange rows and columns K-1 and IMAX, use 2-by-2 +* pivot block +* + KP = IMAX + KSTEP = 2 + END IF + END IF +* + KK = K - KSTEP + 1 + IF( KSTEP.EQ.2 ) + $ KNC = KNC - K + 1 + IF( KP.NE.KK ) THEN +* +* Interchange rows and columns KK and KP in the leading +* submatrix A(1:k,1:k) +* + CALL DSWAP( KP-1, AP( KNC ), 1, AP( KPC ), 1 ) + KX = KPC + KP - 1 + DO 30 J = KP + 1, KK - 1 + KX = KX + J - 1 + T = AP( KNC+J-1 ) + AP( KNC+J-1 ) = AP( KX ) + AP( KX ) = T + 30 CONTINUE + T = AP( KNC+KK-1 ) + AP( KNC+KK-1 ) = AP( KPC+KP-1 ) + AP( KPC+KP-1 ) = T + IF( KSTEP.EQ.2 ) THEN + T = AP( KC+K-2 ) + AP( KC+K-2 ) = AP( KC+KP-1 ) + AP( KC+KP-1 ) = T + END IF + END IF +* +* Update the leading submatrix +* + IF( KSTEP.EQ.1 ) THEN +* +* 1-by-1 pivot block D(k): column k now holds +* +* W(k) = U(k)*D(k) +* +* where U(k) is the k-th column of U +* +* Perform a rank-1 update of A(1:k-1,1:k-1) as +* +* A := A - U(k)*D(k)*U(k)' = A - W(k)*1/D(k)*W(k)' +* + R1 = ONE / AP( KC+K-1 ) + CALL DSPR( UPLO, K-1, -R1, AP( KC ), 1, AP ) +* +* Store U(k) in column k +* + CALL DSCAL( K-1, R1, AP( KC ), 1 ) + ELSE +* +* 2-by-2 pivot block D(k): columns k and k-1 now hold +* +* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) +* +* where U(k) and U(k-1) are the k-th and (k-1)-th columns +* of U +* +* Perform a rank-2 update of A(1:k-2,1:k-2) as +* +* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )' +* = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )' +* + IF( K.GT.2 ) THEN +* + D12 = AP( K-1+( K-1 )*K / 2 ) + D22 = AP( K-1+( K-2 )*( K-1 ) / 2 ) / D12 + D11 = AP( K+( K-1 )*K / 2 ) / D12 + T = ONE / ( D11*D22-ONE ) + D12 = T / D12 +* + DO 50 J = K - 2, 1, -1 + WKM1 = D12*( D11*AP( J+( K-2 )*( K-1 ) / 2 )- + $ AP( J+( K-1 )*K / 2 ) ) + WK = D12*( D22*AP( J+( K-1 )*K / 2 )- + $ AP( J+( K-2 )*( K-1 ) / 2 ) ) + DO 40 I = J, 1, -1 + AP( I+( J-1 )*J / 2 ) = AP( I+( J-1 )*J / 2 ) - + $ AP( I+( K-1 )*K / 2 )*WK - + $ AP( I+( K-2 )*( K-1 ) / 2 )*WKM1 + 40 CONTINUE + AP( J+( K-1 )*K / 2 ) = WK + AP( J+( K-2 )*( K-1 ) / 2 ) = WKM1 + 50 CONTINUE +* + END IF +* + END IF + END IF +* +* Store details of the interchanges in IPIV +* + IF( KSTEP.EQ.1 ) THEN + IPIV( K ) = KP + ELSE + IPIV( K ) = -KP + IPIV( K-1 ) = -KP + END IF +* +* Decrease K and return to the start of the main loop +* + K = K - KSTEP + KC = KNC - K + GO TO 10 +* + ELSE +* +* Factorize A as L*D*L' using the lower triangle of A +* +* K is the main loop index, increasing from 1 to N in steps of +* 1 or 2 +* + K = 1 + KC = 1 + NPP = N*( N+1 ) / 2 + 60 CONTINUE + KNC = KC +* +* If K > N, exit from loop +* + IF( K.GT.N ) + $ GO TO 110 + KSTEP = 1 +* +* Determine rows and columns to be interchanged and whether +* a 1-by-1 or 2-by-2 pivot block will be used +* + ABSAKK = ABS( AP( KC ) ) +* +* IMAX is the row-index of the largest off-diagonal element in +* column K, and COLMAX is its absolute value +* + IF( K.LT.N ) THEN + IMAX = K + IDAMAX( N-K, AP( KC+1 ), 1 ) + COLMAX = ABS( AP( KC+IMAX-K ) ) + ELSE + COLMAX = ZERO + END IF +* + IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN +* +* Column K is zero: set INFO and continue +* + IF( INFO.EQ.0 ) + $ INFO = K + KP = K + ELSE + IF( ABSAKK.GE.ALPHA*COLMAX ) THEN +* +* no interchange, use 1-by-1 pivot block +* + KP = K + ELSE +* +* JMAX is the column-index of the largest off-diagonal +* element in row IMAX, and ROWMAX is its absolute value +* + ROWMAX = ZERO + KX = KC + IMAX - K + DO 70 J = K, IMAX - 1 + IF( ABS( AP( KX ) ).GT.ROWMAX ) THEN + ROWMAX = ABS( AP( KX ) ) + JMAX = J + END IF + KX = KX + N - J + 70 CONTINUE + KPC = NPP - ( N-IMAX+1 )*( N-IMAX+2 ) / 2 + 1 + IF( IMAX.LT.N ) THEN + JMAX = IMAX + IDAMAX( N-IMAX, AP( KPC+1 ), 1 ) + ROWMAX = MAX( ROWMAX, ABS( AP( KPC+JMAX-IMAX ) ) ) + END IF +* + IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN +* +* no interchange, use 1-by-1 pivot block +* + KP = K + ELSE IF( ABS( AP( KPC ) ).GE.ALPHA*ROWMAX ) THEN +* +* interchange rows and columns K and IMAX, use 1-by-1 +* pivot block +* + KP = IMAX + ELSE +* +* interchange rows and columns K+1 and IMAX, use 2-by-2 +* pivot block +* + KP = IMAX + KSTEP = 2 + END IF + END IF +* + KK = K + KSTEP - 1 + IF( KSTEP.EQ.2 ) + $ KNC = KNC + N - K + 1 + IF( KP.NE.KK ) THEN +* +* Interchange rows and columns KK and KP in the trailing +* submatrix A(k:n,k:n) +* + IF( KP.LT.N ) + $ CALL DSWAP( N-KP, AP( KNC+KP-KK+1 ), 1, AP( KPC+1 ), + $ 1 ) + KX = KNC + KP - KK + DO 80 J = KK + 1, KP - 1 + KX = KX + N - J + 1 + T = AP( KNC+J-KK ) + AP( KNC+J-KK ) = AP( KX ) + AP( KX ) = T + 80 CONTINUE + T = AP( KNC ) + AP( KNC ) = AP( KPC ) + AP( KPC ) = T + IF( KSTEP.EQ.2 ) THEN + T = AP( KC+1 ) + AP( KC+1 ) = AP( KC+KP-K ) + AP( KC+KP-K ) = T + END IF + END IF +* +* Update the trailing submatrix +* + IF( KSTEP.EQ.1 ) THEN +* +* 1-by-1 pivot block D(k): column k now holds +* +* W(k) = L(k)*D(k) +* +* where L(k) is the k-th column of L +* + IF( K.LT.N ) THEN +* +* Perform a rank-1 update of A(k+1:n,k+1:n) as +* +* A := A - L(k)*D(k)*L(k)' = A - W(k)*(1/D(k))*W(k)' +* + R1 = ONE / AP( KC ) + CALL DSPR( UPLO, N-K, -R1, AP( KC+1 ), 1, + $ AP( KC+N-K+1 ) ) +* +* Store L(k) in column K +* + CALL DSCAL( N-K, R1, AP( KC+1 ), 1 ) + END IF + ELSE +* +* 2-by-2 pivot block D(k): columns K and K+1 now hold +* +* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) +* +* where L(k) and L(k+1) are the k-th and (k+1)-th columns +* of L +* + IF( K.LT.N-1 ) THEN +* +* Perform a rank-2 update of A(k+2:n,k+2:n) as +* +* A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )' +* = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )' +* + D21 = AP( K+1+( K-1 )*( 2*N-K ) / 2 ) + D11 = AP( K+1+K*( 2*N-K-1 ) / 2 ) / D21 + D22 = AP( K+( K-1 )*( 2*N-K ) / 2 ) / D21 + T = ONE / ( D11*D22-ONE ) + D21 = T / D21 +* + DO 100 J = K + 2, N + WK = D21*( D11*AP( J+( K-1 )*( 2*N-K ) / 2 )- + $ AP( J+K*( 2*N-K-1 ) / 2 ) ) + WKP1 = D21*( D22*AP( J+K*( 2*N-K-1 ) / 2 )- + $ AP( J+( K-1 )*( 2*N-K ) / 2 ) ) +* + DO 90 I = J, N + AP( I+( J-1 )*( 2*N-J ) / 2 ) = AP( I+( J-1 )* + $ ( 2*N-J ) / 2 ) - AP( I+( K-1 )*( 2*N-K ) / + $ 2 )*WK - AP( I+K*( 2*N-K-1 ) / 2 )*WKP1 + 90 CONTINUE +* + AP( J+( K-1 )*( 2*N-K ) / 2 ) = WK + AP( J+K*( 2*N-K-1 ) / 2 ) = WKP1 +* + 100 CONTINUE + END IF + END IF + END IF +* +* Store details of the interchanges in IPIV +* + IF( KSTEP.EQ.1 ) THEN + IPIV( K ) = KP + ELSE + IPIV( K ) = -KP + IPIV( K+1 ) = -KP + END IF +* +* Increase K and return to the start of the main loop +* + K = K + KSTEP + KC = KNC + N - K + 2 + GO TO 60 +* + END IF +* + 110 CONTINUE + RETURN +* +* End of DSPTRF +* + END |