summaryrefslogtreecommitdiff
path: root/src/fortran/lapack/dlasyf.f
diff options
context:
space:
mode:
authorSiddhesh Wani2015-05-25 14:46:31 +0530
committerSiddhesh Wani2015-05-25 14:46:31 +0530
commitdb464f35f5a10b58d9ed1085e0b462689adee583 (patch)
treede5cdbc71a54765d9fec33414630ae2c8904c9b8 /src/fortran/lapack/dlasyf.f
downloadScilab2C_fossee_old-db464f35f5a10b58d9ed1085e0b462689adee583.tar.gz
Scilab2C_fossee_old-db464f35f5a10b58d9ed1085e0b462689adee583.tar.bz2
Scilab2C_fossee_old-db464f35f5a10b58d9ed1085e0b462689adee583.zip
Original Version
Diffstat (limited to 'src/fortran/lapack/dlasyf.f')
-rw-r--r--src/fortran/lapack/dlasyf.f587
1 files changed, 587 insertions, 0 deletions
diff --git a/src/fortran/lapack/dlasyf.f b/src/fortran/lapack/dlasyf.f
new file mode 100644
index 0000000..67b9c14
--- /dev/null
+++ b/src/fortran/lapack/dlasyf.f
@@ -0,0 +1,587 @@
+ SUBROUTINE DLASYF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER UPLO
+ INTEGER INFO, KB, LDA, LDW, N, NB
+* ..
+* .. Array Arguments ..
+ INTEGER IPIV( * )
+ DOUBLE PRECISION A( LDA, * ), W( LDW, * )
+* ..
+*
+* Purpose
+* =======
+*
+* DLASYF computes a partial factorization of a real symmetric matrix A
+* using the Bunch-Kaufman diagonal pivoting method. The partial
+* factorization has the form:
+*
+* A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or:
+* ( 0 U22 ) ( 0 D ) ( U12' U22' )
+*
+* A = ( L11 0 ) ( D 0 ) ( L11' L21' ) if UPLO = 'L'
+* ( L21 I ) ( 0 A22 ) ( 0 I )
+*
+* where the order of D is at most NB. The actual order is returned in
+* the argument KB, and is either NB or NB-1, or N if N <= NB.
+*
+* DLASYF is an auxiliary routine called by DSYTRF. It uses blocked code
+* (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or
+* A22 (if UPLO = 'L').
+*
+* Arguments
+* =========
+*
+* UPLO (input) CHARACTER*1
+* Specifies whether the upper or lower triangular part of the
+* symmetric matrix A is stored:
+* = 'U': Upper triangular
+* = 'L': Lower triangular
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0.
+*
+* NB (input) INTEGER
+* The maximum number of columns of the matrix A that should be
+* factored. NB should be at least 2 to allow for 2-by-2 pivot
+* blocks.
+*
+* KB (output) INTEGER
+* The number of columns of A that were actually factored.
+* KB is either NB-1 or NB, or N if N <= NB.
+*
+* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+* On entry, the symmetric matrix A. If UPLO = 'U', the leading
+* n-by-n upper triangular part of A contains the upper
+* triangular part of the matrix A, and the strictly lower
+* triangular part of A is not referenced. If UPLO = 'L', the
+* leading n-by-n lower triangular part of A contains the lower
+* triangular part of the matrix A, and the strictly upper
+* triangular part of A is not referenced.
+* On exit, A contains details of the partial factorization.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,N).
+*
+* IPIV (output) INTEGER array, dimension (N)
+* Details of the interchanges and the block structure of D.
+* If UPLO = 'U', only the last KB elements of IPIV are set;
+* if UPLO = 'L', only the first KB elements are set.
+*
+* If IPIV(k) > 0, then rows and columns k and IPIV(k) were
+* interchanged and D(k,k) is a 1-by-1 diagonal block.
+* If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
+* columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
+* is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
+* IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
+* interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
+*
+* W (workspace) DOUBLE PRECISION array, dimension (LDW,NB)
+*
+* LDW (input) INTEGER
+* The leading dimension of the array W. LDW >= max(1,N).
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* > 0: if INFO = k, D(k,k) is exactly zero. The factorization
+* has been completed, but the block diagonal matrix D is
+* exactly singular.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
+ DOUBLE PRECISION EIGHT, SEVTEN
+ PARAMETER ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
+* ..
+* .. Local Scalars ..
+ INTEGER IMAX, J, JB, JJ, JMAX, JP, K, KK, KKW, KP,
+ $ KSTEP, KW
+ DOUBLE PRECISION ABSAKK, ALPHA, COLMAX, D11, D21, D22, R1,
+ $ ROWMAX, T
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER IDAMAX
+ EXTERNAL LSAME, IDAMAX
+* ..
+* .. External Subroutines ..
+ EXTERNAL DCOPY, DGEMM, DGEMV, DSCAL, DSWAP
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, MAX, MIN, SQRT
+* ..
+* .. Executable Statements ..
+*
+ INFO = 0
+*
+* Initialize ALPHA for use in choosing pivot block size.
+*
+ ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+*
+* Factorize the trailing columns of A using the upper triangle
+* of A and working backwards, and compute the matrix W = U12*D
+* for use in updating A11
+*
+* K is the main loop index, decreasing from N in steps of 1 or 2
+*
+* KW is the column of W which corresponds to column K of A
+*
+ K = N
+ 10 CONTINUE
+ KW = NB + K - N
+*
+* Exit from loop
+*
+ IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
+ $ GO TO 30
+*
+* Copy column K of A to column KW of W and update it
+*
+ CALL DCOPY( K, A( 1, K ), 1, W( 1, KW ), 1 )
+ IF( K.LT.N )
+ $ CALL DGEMV( 'No transpose', K, N-K, -ONE, A( 1, K+1 ), LDA,
+ $ W( K, KW+1 ), LDW, ONE, W( 1, KW ), 1 )
+*
+ KSTEP = 1
+*
+* Determine rows and columns to be interchanged and whether
+* a 1-by-1 or 2-by-2 pivot block will be used
+*
+ ABSAKK = ABS( W( K, KW ) )
+*
+* IMAX is the row-index of the largest off-diagonal element in
+* column K, and COLMAX is its absolute value
+*
+ IF( K.GT.1 ) THEN
+ IMAX = IDAMAX( K-1, W( 1, KW ), 1 )
+ COLMAX = ABS( W( IMAX, KW ) )
+ ELSE
+ COLMAX = ZERO
+ END IF
+*
+ IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
+*
+* Column K is zero: set INFO and continue
+*
+ IF( INFO.EQ.0 )
+ $ INFO = K
+ KP = K
+ ELSE
+ IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
+*
+* no interchange, use 1-by-1 pivot block
+*
+ KP = K
+ ELSE
+*
+* Copy column IMAX to column KW-1 of W and update it
+*
+ CALL DCOPY( IMAX, A( 1, IMAX ), 1, W( 1, KW-1 ), 1 )
+ CALL DCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
+ $ W( IMAX+1, KW-1 ), 1 )
+ IF( K.LT.N )
+ $ CALL DGEMV( 'No transpose', K, N-K, -ONE, A( 1, K+1 ),
+ $ LDA, W( IMAX, KW+1 ), LDW, ONE,
+ $ W( 1, KW-1 ), 1 )
+*
+* JMAX is the column-index of the largest off-diagonal
+* element in row IMAX, and ROWMAX is its absolute value
+*
+ JMAX = IMAX + IDAMAX( K-IMAX, W( IMAX+1, KW-1 ), 1 )
+ ROWMAX = ABS( W( JMAX, KW-1 ) )
+ IF( IMAX.GT.1 ) THEN
+ JMAX = IDAMAX( IMAX-1, W( 1, KW-1 ), 1 )
+ ROWMAX = MAX( ROWMAX, ABS( W( JMAX, KW-1 ) ) )
+ END IF
+*
+ IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
+*
+* no interchange, use 1-by-1 pivot block
+*
+ KP = K
+ ELSE IF( ABS( W( IMAX, KW-1 ) ).GE.ALPHA*ROWMAX ) THEN
+*
+* interchange rows and columns K and IMAX, use 1-by-1
+* pivot block
+*
+ KP = IMAX
+*
+* copy column KW-1 of W to column KW
+*
+ CALL DCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
+ ELSE
+*
+* interchange rows and columns K-1 and IMAX, use 2-by-2
+* pivot block
+*
+ KP = IMAX
+ KSTEP = 2
+ END IF
+ END IF
+*
+ KK = K - KSTEP + 1
+ KKW = NB + KK - N
+*
+* Updated column KP is already stored in column KKW of W
+*
+ IF( KP.NE.KK ) THEN
+*
+* Copy non-updated column KK to column KP
+*
+ A( KP, K ) = A( KK, K )
+ CALL DCOPY( K-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
+ $ LDA )
+ CALL DCOPY( KP, A( 1, KK ), 1, A( 1, KP ), 1 )
+*
+* Interchange rows KK and KP in last KK columns of A and W
+*
+ CALL DSWAP( N-KK+1, A( KK, KK ), LDA, A( KP, KK ), LDA )
+ CALL DSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
+ $ LDW )
+ END IF
+*
+ IF( KSTEP.EQ.1 ) THEN
+*
+* 1-by-1 pivot block D(k): column KW of W now holds
+*
+* W(k) = U(k)*D(k)
+*
+* where U(k) is the k-th column of U
+*
+* Store U(k) in column k of A
+*
+ CALL DCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
+ R1 = ONE / A( K, K )
+ CALL DSCAL( K-1, R1, A( 1, K ), 1 )
+ ELSE
+*
+* 2-by-2 pivot block D(k): columns KW and KW-1 of W now
+* hold
+*
+* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
+*
+* where U(k) and U(k-1) are the k-th and (k-1)-th columns
+* of U
+*
+ IF( K.GT.2 ) THEN
+*
+* Store U(k) and U(k-1) in columns k and k-1 of A
+*
+ D21 = W( K-1, KW )
+ D11 = W( K, KW ) / D21
+ D22 = W( K-1, KW-1 ) / D21
+ T = ONE / ( D11*D22-ONE )
+ D21 = T / D21
+ DO 20 J = 1, K - 2
+ A( J, K-1 ) = D21*( D11*W( J, KW-1 )-W( J, KW ) )
+ A( J, K ) = D21*( D22*W( J, KW )-W( J, KW-1 ) )
+ 20 CONTINUE
+ END IF
+*
+* Copy D(k) to A
+*
+ A( K-1, K-1 ) = W( K-1, KW-1 )
+ A( K-1, K ) = W( K-1, KW )
+ A( K, K ) = W( K, KW )
+ END IF
+ END IF
+*
+* Store details of the interchanges in IPIV
+*
+ IF( KSTEP.EQ.1 ) THEN
+ IPIV( K ) = KP
+ ELSE
+ IPIV( K ) = -KP
+ IPIV( K-1 ) = -KP
+ END IF
+*
+* Decrease K and return to the start of the main loop
+*
+ K = K - KSTEP
+ GO TO 10
+*
+ 30 CONTINUE
+*
+* Update the upper triangle of A11 (= A(1:k,1:k)) as
+*
+* A11 := A11 - U12*D*U12' = A11 - U12*W'
+*
+* computing blocks of NB columns at a time
+*
+ DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
+ JB = MIN( NB, K-J+1 )
+*
+* Update the upper triangle of the diagonal block
+*
+ DO 40 JJ = J, J + JB - 1
+ CALL DGEMV( 'No transpose', JJ-J+1, N-K, -ONE,
+ $ A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, ONE,
+ $ A( J, JJ ), 1 )
+ 40 CONTINUE
+*
+* Update the rectangular superdiagonal block
+*
+ CALL DGEMM( 'No transpose', 'Transpose', J-1, JB, N-K, -ONE,
+ $ A( 1, K+1 ), LDA, W( J, KW+1 ), LDW, ONE,
+ $ A( 1, J ), LDA )
+ 50 CONTINUE
+*
+* Put U12 in standard form by partially undoing the interchanges
+* in columns k+1:n
+*
+ J = K + 1
+ 60 CONTINUE
+ JJ = J
+ JP = IPIV( J )
+ IF( JP.LT.0 ) THEN
+ JP = -JP
+ J = J + 1
+ END IF
+ J = J + 1
+ IF( JP.NE.JJ .AND. J.LE.N )
+ $ CALL DSWAP( N-J+1, A( JP, J ), LDA, A( JJ, J ), LDA )
+ IF( J.LE.N )
+ $ GO TO 60
+*
+* Set KB to the number of columns factorized
+*
+ KB = N - K
+*
+ ELSE
+*
+* Factorize the leading columns of A using the lower triangle
+* of A and working forwards, and compute the matrix W = L21*D
+* for use in updating A22
+*
+* K is the main loop index, increasing from 1 in steps of 1 or 2
+*
+ K = 1
+ 70 CONTINUE
+*
+* Exit from loop
+*
+ IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
+ $ GO TO 90
+*
+* Copy column K of A to column K of W and update it
+*
+ CALL DCOPY( N-K+1, A( K, K ), 1, W( K, K ), 1 )
+ CALL DGEMV( 'No transpose', N-K+1, K-1, -ONE, A( K, 1 ), LDA,
+ $ W( K, 1 ), LDW, ONE, W( K, K ), 1 )
+*
+ KSTEP = 1
+*
+* Determine rows and columns to be interchanged and whether
+* a 1-by-1 or 2-by-2 pivot block will be used
+*
+ ABSAKK = ABS( W( K, K ) )
+*
+* IMAX is the row-index of the largest off-diagonal element in
+* column K, and COLMAX is its absolute value
+*
+ IF( K.LT.N ) THEN
+ IMAX = K + IDAMAX( N-K, W( K+1, K ), 1 )
+ COLMAX = ABS( W( IMAX, K ) )
+ ELSE
+ COLMAX = ZERO
+ END IF
+*
+ IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
+*
+* Column K is zero: set INFO and continue
+*
+ IF( INFO.EQ.0 )
+ $ INFO = K
+ KP = K
+ ELSE
+ IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
+*
+* no interchange, use 1-by-1 pivot block
+*
+ KP = K
+ ELSE
+*
+* Copy column IMAX to column K+1 of W and update it
+*
+ CALL DCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1 )
+ CALL DCOPY( N-IMAX+1, A( IMAX, IMAX ), 1, W( IMAX, K+1 ),
+ $ 1 )
+ CALL DGEMV( 'No transpose', N-K+1, K-1, -ONE, A( K, 1 ),
+ $ LDA, W( IMAX, 1 ), LDW, ONE, W( K, K+1 ), 1 )
+*
+* JMAX is the column-index of the largest off-diagonal
+* element in row IMAX, and ROWMAX is its absolute value
+*
+ JMAX = K - 1 + IDAMAX( IMAX-K, W( K, K+1 ), 1 )
+ ROWMAX = ABS( W( JMAX, K+1 ) )
+ IF( IMAX.LT.N ) THEN
+ JMAX = IMAX + IDAMAX( N-IMAX, W( IMAX+1, K+1 ), 1 )
+ ROWMAX = MAX( ROWMAX, ABS( W( JMAX, K+1 ) ) )
+ END IF
+*
+ IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
+*
+* no interchange, use 1-by-1 pivot block
+*
+ KP = K
+ ELSE IF( ABS( W( IMAX, K+1 ) ).GE.ALPHA*ROWMAX ) THEN
+*
+* interchange rows and columns K and IMAX, use 1-by-1
+* pivot block
+*
+ KP = IMAX
+*
+* copy column K+1 of W to column K
+*
+ CALL DCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
+ ELSE
+*
+* interchange rows and columns K+1 and IMAX, use 2-by-2
+* pivot block
+*
+ KP = IMAX
+ KSTEP = 2
+ END IF
+ END IF
+*
+ KK = K + KSTEP - 1
+*
+* Updated column KP is already stored in column KK of W
+*
+ IF( KP.NE.KK ) THEN
+*
+* Copy non-updated column KK to column KP
+*
+ A( KP, K ) = A( KK, K )
+ CALL DCOPY( KP-K-1, A( K+1, KK ), 1, A( KP, K+1 ), LDA )
+ CALL DCOPY( N-KP+1, A( KP, KK ), 1, A( KP, KP ), 1 )
+*
+* Interchange rows KK and KP in first KK columns of A and W
+*
+ CALL DSWAP( KK, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
+ CALL DSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
+ END IF
+*
+ IF( KSTEP.EQ.1 ) THEN
+*
+* 1-by-1 pivot block D(k): column k of W now holds
+*
+* W(k) = L(k)*D(k)
+*
+* where L(k) is the k-th column of L
+*
+* Store L(k) in column k of A
+*
+ CALL DCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
+ IF( K.LT.N ) THEN
+ R1 = ONE / A( K, K )
+ CALL DSCAL( N-K, R1, A( K+1, K ), 1 )
+ END IF
+ ELSE
+*
+* 2-by-2 pivot block D(k): columns k and k+1 of W now hold
+*
+* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
+*
+* where L(k) and L(k+1) are the k-th and (k+1)-th columns
+* of L
+*
+ IF( K.LT.N-1 ) THEN
+*
+* Store L(k) and L(k+1) in columns k and k+1 of A
+*
+ D21 = W( K+1, K )
+ D11 = W( K+1, K+1 ) / D21
+ D22 = W( K, K ) / D21
+ T = ONE / ( D11*D22-ONE )
+ D21 = T / D21
+ DO 80 J = K + 2, N
+ A( J, K ) = D21*( D11*W( J, K )-W( J, K+1 ) )
+ A( J, K+1 ) = D21*( D22*W( J, K+1 )-W( J, K ) )
+ 80 CONTINUE
+ END IF
+*
+* Copy D(k) to A
+*
+ A( K, K ) = W( K, K )
+ A( K+1, K ) = W( K+1, K )
+ A( K+1, K+1 ) = W( K+1, K+1 )
+ END IF
+ END IF
+*
+* Store details of the interchanges in IPIV
+*
+ IF( KSTEP.EQ.1 ) THEN
+ IPIV( K ) = KP
+ ELSE
+ IPIV( K ) = -KP
+ IPIV( K+1 ) = -KP
+ END IF
+*
+* Increase K and return to the start of the main loop
+*
+ K = K + KSTEP
+ GO TO 70
+*
+ 90 CONTINUE
+*
+* Update the lower triangle of A22 (= A(k:n,k:n)) as
+*
+* A22 := A22 - L21*D*L21' = A22 - L21*W'
+*
+* computing blocks of NB columns at a time
+*
+ DO 110 J = K, N, NB
+ JB = MIN( NB, N-J+1 )
+*
+* Update the lower triangle of the diagonal block
+*
+ DO 100 JJ = J, J + JB - 1
+ CALL DGEMV( 'No transpose', J+JB-JJ, K-1, -ONE,
+ $ A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, ONE,
+ $ A( JJ, JJ ), 1 )
+ 100 CONTINUE
+*
+* Update the rectangular subdiagonal block
+*
+ IF( J+JB.LE.N )
+ $ CALL DGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
+ $ K-1, -ONE, A( J+JB, 1 ), LDA, W( J, 1 ), LDW,
+ $ ONE, A( J+JB, J ), LDA )
+ 110 CONTINUE
+*
+* Put L21 in standard form by partially undoing the interchanges
+* in columns 1:k-1
+*
+ J = K - 1
+ 120 CONTINUE
+ JJ = J
+ JP = IPIV( J )
+ IF( JP.LT.0 ) THEN
+ JP = -JP
+ J = J - 1
+ END IF
+ J = J - 1
+ IF( JP.NE.JJ .AND. J.GE.1 )
+ $ CALL DSWAP( J, A( JP, 1 ), LDA, A( JJ, 1 ), LDA )
+ IF( J.GE.1 )
+ $ GO TO 120
+*
+* Set KB to the number of columns factorized
+*
+ KB = K - 1
+*
+ END IF
+ RETURN
+*
+* End of DLASYF
+*
+ END