summaryrefslogtreecommitdiff
path: root/src/fortran/lapack/dlaqr4.f
diff options
context:
space:
mode:
authorSiddhesh Wani2015-05-25 14:46:31 +0530
committerSiddhesh Wani2015-05-25 14:46:31 +0530
commitdb464f35f5a10b58d9ed1085e0b462689adee583 (patch)
treede5cdbc71a54765d9fec33414630ae2c8904c9b8 /src/fortran/lapack/dlaqr4.f
downloadScilab2C_fossee_old-db464f35f5a10b58d9ed1085e0b462689adee583.tar.gz
Scilab2C_fossee_old-db464f35f5a10b58d9ed1085e0b462689adee583.tar.bz2
Scilab2C_fossee_old-db464f35f5a10b58d9ed1085e0b462689adee583.zip
Original Version
Diffstat (limited to 'src/fortran/lapack/dlaqr4.f')
-rw-r--r--src/fortran/lapack/dlaqr4.f640
1 files changed, 640 insertions, 0 deletions
diff --git a/src/fortran/lapack/dlaqr4.f b/src/fortran/lapack/dlaqr4.f
new file mode 100644
index 0000000..8692e7f
--- /dev/null
+++ b/src/fortran/lapack/dlaqr4.f
@@ -0,0 +1,640 @@
+ SUBROUTINE DLAQR4( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
+ $ ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO )
+*
+* -- LAPACK auxiliary routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
+ LOGICAL WANTT, WANTZ
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION H( LDH, * ), WI( * ), WORK( * ), WR( * ),
+ $ Z( LDZ, * )
+* ..
+*
+* This subroutine implements one level of recursion for DLAQR0.
+* It is a complete implementation of the small bulge multi-shift
+* QR algorithm. It may be called by DLAQR0 and, for large enough
+* deflation window size, it may be called by DLAQR3. This
+* subroutine is identical to DLAQR0 except that it calls DLAQR2
+* instead of DLAQR3.
+*
+* Purpose
+* =======
+*
+* DLAQR4 computes the eigenvalues of a Hessenberg matrix H
+* and, optionally, the matrices T and Z from the Schur decomposition
+* H = Z T Z**T, where T is an upper quasi-triangular matrix (the
+* Schur form), and Z is the orthogonal matrix of Schur vectors.
+*
+* Optionally Z may be postmultiplied into an input orthogonal
+* matrix Q so that this routine can give the Schur factorization
+* of a matrix A which has been reduced to the Hessenberg form H
+* by the orthogonal matrix Q: A = Q*H*Q**T = (QZ)*T*(QZ)**T.
+*
+* Arguments
+* =========
+*
+* WANTT (input) LOGICAL
+* = .TRUE. : the full Schur form T is required;
+* = .FALSE.: only eigenvalues are required.
+*
+* WANTZ (input) LOGICAL
+* = .TRUE. : the matrix of Schur vectors Z is required;
+* = .FALSE.: Schur vectors are not required.
+*
+* N (input) INTEGER
+* The order of the matrix H. N .GE. 0.
+*
+* ILO (input) INTEGER
+* IHI (input) INTEGER
+* It is assumed that H is already upper triangular in rows
+* and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1,
+* H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
+* previous call to DGEBAL, and then passed to DGEHRD when the
+* matrix output by DGEBAL is reduced to Hessenberg form.
+* Otherwise, ILO and IHI should be set to 1 and N,
+* respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
+* If N = 0, then ILO = 1 and IHI = 0.
+*
+* H (input/output) DOUBLE PRECISION array, dimension (LDH,N)
+* On entry, the upper Hessenberg matrix H.
+* On exit, if INFO = 0 and WANTT is .TRUE., then H contains
+* the upper quasi-triangular matrix T from the Schur
+* decomposition (the Schur form); 2-by-2 diagonal blocks
+* (corresponding to complex conjugate pairs of eigenvalues)
+* are returned in standard form, with H(i,i) = H(i+1,i+1)
+* and H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and WANTT is
+* .FALSE., then the contents of H are unspecified on exit.
+* (The output value of H when INFO.GT.0 is given under the
+* description of INFO below.)
+*
+* This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
+* j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
+*
+* LDH (input) INTEGER
+* The leading dimension of the array H. LDH .GE. max(1,N).
+*
+* WR (output) DOUBLE PRECISION array, dimension (IHI)
+* WI (output) DOUBLE PRECISION array, dimension (IHI)
+* The real and imaginary parts, respectively, of the computed
+* eigenvalues of H(ILO:IHI,ILO:IHI) are stored WR(ILO:IHI)
+* and WI(ILO:IHI). If two eigenvalues are computed as a
+* complex conjugate pair, they are stored in consecutive
+* elements of WR and WI, say the i-th and (i+1)th, with
+* WI(i) .GT. 0 and WI(i+1) .LT. 0. If WANTT is .TRUE., then
+* the eigenvalues are stored in the same order as on the
+* diagonal of the Schur form returned in H, with
+* WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal
+* block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
+* WI(i+1) = -WI(i).
+*
+* ILOZ (input) INTEGER
+* IHIZ (input) INTEGER
+* Specify the rows of Z to which transformations must be
+* applied if WANTZ is .TRUE..
+* 1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N.
+*
+* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,IHI)
+* If WANTZ is .FALSE., then Z is not referenced.
+* If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
+* replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
+* orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
+* (The output value of Z when INFO.GT.0 is given under
+* the description of INFO below.)
+*
+* LDZ (input) INTEGER
+* The leading dimension of the array Z. if WANTZ is .TRUE.
+* then LDZ.GE.MAX(1,IHIZ). Otherwize, LDZ.GE.1.
+*
+* WORK (workspace/output) DOUBLE PRECISION array, dimension LWORK
+* On exit, if LWORK = -1, WORK(1) returns an estimate of
+* the optimal value for LWORK.
+*
+* LWORK (input) INTEGER
+* The dimension of the array WORK. LWORK .GE. max(1,N)
+* is sufficient, but LWORK typically as large as 6*N may
+* be required for optimal performance. A workspace query
+* to determine the optimal workspace size is recommended.
+*
+* If LWORK = -1, then DLAQR4 does a workspace query.
+* In this case, DLAQR4 checks the input parameters and
+* estimates the optimal workspace size for the given
+* values of N, ILO and IHI. The estimate is returned
+* in WORK(1). No error message related to LWORK is
+* issued by XERBLA. Neither H nor Z are accessed.
+*
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* .GT. 0: if INFO = i, DLAQR4 failed to compute all of
+* the eigenvalues. Elements 1:ilo-1 and i+1:n of WR
+* and WI contain those eigenvalues which have been
+* successfully computed. (Failures are rare.)
+*
+* If INFO .GT. 0 and WANT is .FALSE., then on exit,
+* the remaining unconverged eigenvalues are the eigen-
+* values of the upper Hessenberg matrix rows and
+* columns ILO through INFO of the final, output
+* value of H.
+*
+* If INFO .GT. 0 and WANTT is .TRUE., then on exit
+*
+* (*) (initial value of H)*U = U*(final value of H)
+*
+* where U is an orthogonal matrix. The final
+* value of H is upper Hessenberg and quasi-triangular
+* in rows and columns INFO+1 through IHI.
+*
+* If INFO .GT. 0 and WANTZ is .TRUE., then on exit
+*
+* (final value of Z(ILO:IHI,ILOZ:IHIZ)
+* = (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
+*
+* where U is the orthogonal matrix in (*) (regard-
+* less of the value of WANTT.)
+*
+* If INFO .GT. 0 and WANTZ is .FALSE., then Z is not
+* accessed.
+*
+* ================================================================
+* Based on contributions by
+* Karen Braman and Ralph Byers, Department of Mathematics,
+* University of Kansas, USA
+*
+* ================================================================
+* References:
+* K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
+* Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
+* Performance, SIAM Journal of Matrix Analysis, volume 23, pages
+* 929--947, 2002.
+*
+* K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
+* Algorithm Part II: Aggressive Early Deflation, SIAM Journal
+* of Matrix Analysis, volume 23, pages 948--973, 2002.
+*
+* ================================================================
+* .. Parameters ..
+*
+* ==== Matrices of order NTINY or smaller must be processed by
+* . DLAHQR because of insufficient subdiagonal scratch space.
+* . (This is a hard limit.) ====
+*
+* ==== Exceptional deflation windows: try to cure rare
+* . slow convergence by increasing the size of the
+* . deflation window after KEXNW iterations. =====
+*
+* ==== Exceptional shifts: try to cure rare slow convergence
+* . with ad-hoc exceptional shifts every KEXSH iterations.
+* . The constants WILK1 and WILK2 are used to form the
+* . exceptional shifts. ====
+*
+ INTEGER NTINY
+ PARAMETER ( NTINY = 11 )
+ INTEGER KEXNW, KEXSH
+ PARAMETER ( KEXNW = 5, KEXSH = 6 )
+ DOUBLE PRECISION WILK1, WILK2
+ PARAMETER ( WILK1 = 0.75d0, WILK2 = -0.4375d0 )
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0d0, ONE = 1.0d0 )
+* ..
+* .. Local Scalars ..
+ DOUBLE PRECISION AA, BB, CC, CS, DD, SN, SS, SWAP
+ INTEGER I, INF, IT, ITMAX, K, KACC22, KBOT, KDU, KS,
+ $ KT, KTOP, KU, KV, KWH, KWTOP, KWV, LD, LS,
+ $ LWKOPT, NDFL, NH, NHO, NIBBLE, NMIN, NS, NSMAX,
+ $ NSR, NVE, NW, NWMAX, NWR
+ LOGICAL NWINC, SORTED
+ CHARACTER JBCMPZ*2
+* ..
+* .. External Functions ..
+ INTEGER ILAENV
+ EXTERNAL ILAENV
+* ..
+* .. Local Arrays ..
+ DOUBLE PRECISION ZDUM( 1, 1 )
+* ..
+* .. External Subroutines ..
+ EXTERNAL DLACPY, DLAHQR, DLANV2, DLAQR2, DLAQR5
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, DBLE, INT, MAX, MIN, MOD
+* ..
+* .. Executable Statements ..
+ INFO = 0
+*
+* ==== Quick return for N = 0: nothing to do. ====
+*
+ IF( N.EQ.0 ) THEN
+ WORK( 1 ) = ONE
+ RETURN
+ END IF
+*
+* ==== Set up job flags for ILAENV. ====
+*
+ IF( WANTT ) THEN
+ JBCMPZ( 1: 1 ) = 'S'
+ ELSE
+ JBCMPZ( 1: 1 ) = 'E'
+ END IF
+ IF( WANTZ ) THEN
+ JBCMPZ( 2: 2 ) = 'V'
+ ELSE
+ JBCMPZ( 2: 2 ) = 'N'
+ END IF
+*
+* ==== Tiny matrices must use DLAHQR. ====
+*
+ IF( N.LE.NTINY ) THEN
+*
+* ==== Estimate optimal workspace. ====
+*
+ LWKOPT = 1
+ IF( LWORK.NE.-1 )
+ $ CALL DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
+ $ ILOZ, IHIZ, Z, LDZ, INFO )
+ ELSE
+*
+* ==== Use small bulge multi-shift QR with aggressive early
+* . deflation on larger-than-tiny matrices. ====
+*
+* ==== Hope for the best. ====
+*
+ INFO = 0
+*
+* ==== NWR = recommended deflation window size. At this
+* . point, N .GT. NTINY = 11, so there is enough
+* . subdiagonal workspace for NWR.GE.2 as required.
+* . (In fact, there is enough subdiagonal space for
+* . NWR.GE.3.) ====
+*
+ NWR = ILAENV( 13, 'DLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
+ NWR = MAX( 2, NWR )
+ NWR = MIN( IHI-ILO+1, ( N-1 ) / 3, NWR )
+ NW = NWR
+*
+* ==== NSR = recommended number of simultaneous shifts.
+* . At this point N .GT. NTINY = 11, so there is at
+* . enough subdiagonal workspace for NSR to be even
+* . and greater than or equal to two as required. ====
+*
+ NSR = ILAENV( 15, 'DLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
+ NSR = MIN( NSR, ( N+6 ) / 9, IHI-ILO )
+ NSR = MAX( 2, NSR-MOD( NSR, 2 ) )
+*
+* ==== Estimate optimal workspace ====
+*
+* ==== Workspace query call to DLAQR2 ====
+*
+ CALL DLAQR2( WANTT, WANTZ, N, ILO, IHI, NWR+1, H, LDH, ILOZ,
+ $ IHIZ, Z, LDZ, LS, LD, WR, WI, H, LDH, N, H, LDH,
+ $ N, H, LDH, WORK, -1 )
+*
+* ==== Optimal workspace = MAX(DLAQR5, DLAQR2) ====
+*
+ LWKOPT = MAX( 3*NSR / 2, INT( WORK( 1 ) ) )
+*
+* ==== Quick return in case of workspace query. ====
+*
+ IF( LWORK.EQ.-1 ) THEN
+ WORK( 1 ) = DBLE( LWKOPT )
+ RETURN
+ END IF
+*
+* ==== DLAHQR/DLAQR0 crossover point ====
+*
+ NMIN = ILAENV( 12, 'DLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
+ NMIN = MAX( NTINY, NMIN )
+*
+* ==== Nibble crossover point ====
+*
+ NIBBLE = ILAENV( 14, 'DLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
+ NIBBLE = MAX( 0, NIBBLE )
+*
+* ==== Accumulate reflections during ttswp? Use block
+* . 2-by-2 structure during matrix-matrix multiply? ====
+*
+ KACC22 = ILAENV( 16, 'DLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
+ KACC22 = MAX( 0, KACC22 )
+ KACC22 = MIN( 2, KACC22 )
+*
+* ==== NWMAX = the largest possible deflation window for
+* . which there is sufficient workspace. ====
+*
+ NWMAX = MIN( ( N-1 ) / 3, LWORK / 2 )
+*
+* ==== NSMAX = the Largest number of simultaneous shifts
+* . for which there is sufficient workspace. ====
+*
+ NSMAX = MIN( ( N+6 ) / 9, 2*LWORK / 3 )
+ NSMAX = NSMAX - MOD( NSMAX, 2 )
+*
+* ==== NDFL: an iteration count restarted at deflation. ====
+*
+ NDFL = 1
+*
+* ==== ITMAX = iteration limit ====
+*
+ ITMAX = MAX( 30, 2*KEXSH )*MAX( 10, ( IHI-ILO+1 ) )
+*
+* ==== Last row and column in the active block ====
+*
+ KBOT = IHI
+*
+* ==== Main Loop ====
+*
+ DO 80 IT = 1, ITMAX
+*
+* ==== Done when KBOT falls below ILO ====
+*
+ IF( KBOT.LT.ILO )
+ $ GO TO 90
+*
+* ==== Locate active block ====
+*
+ DO 10 K = KBOT, ILO + 1, -1
+ IF( H( K, K-1 ).EQ.ZERO )
+ $ GO TO 20
+ 10 CONTINUE
+ K = ILO
+ 20 CONTINUE
+ KTOP = K
+*
+* ==== Select deflation window size ====
+*
+ NH = KBOT - KTOP + 1
+ IF( NDFL.LT.KEXNW .OR. NH.LT.NW ) THEN
+*
+* ==== Typical deflation window. If possible and
+* . advisable, nibble the entire active block.
+* . If not, use size NWR or NWR+1 depending upon
+* . which has the smaller corresponding subdiagonal
+* . entry (a heuristic). ====
+*
+ NWINC = .TRUE.
+ IF( NH.LE.MIN( NMIN, NWMAX ) ) THEN
+ NW = NH
+ ELSE
+ NW = MIN( NWR, NH, NWMAX )
+ IF( NW.LT.NWMAX ) THEN
+ IF( NW.GE.NH-1 ) THEN
+ NW = NH
+ ELSE
+ KWTOP = KBOT - NW + 1
+ IF( ABS( H( KWTOP, KWTOP-1 ) ).GT.
+ $ ABS( H( KWTOP-1, KWTOP-2 ) ) )NW = NW + 1
+ END IF
+ END IF
+ END IF
+ ELSE
+*
+* ==== Exceptional deflation window. If there have
+* . been no deflations in KEXNW or more iterations,
+* . then vary the deflation window size. At first,
+* . because, larger windows are, in general, more
+* . powerful than smaller ones, rapidly increase the
+* . window up to the maximum reasonable and possible.
+* . Then maybe try a slightly smaller window. ====
+*
+ IF( NWINC .AND. NW.LT.MIN( NWMAX, NH ) ) THEN
+ NW = MIN( NWMAX, NH, 2*NW )
+ ELSE
+ NWINC = .FALSE.
+ IF( NW.EQ.NH .AND. NH.GT.2 )
+ $ NW = NH - 1
+ END IF
+ END IF
+*
+* ==== Aggressive early deflation:
+* . split workspace under the subdiagonal into
+* . - an nw-by-nw work array V in the lower
+* . left-hand-corner,
+* . - an NW-by-at-least-NW-but-more-is-better
+* . (NW-by-NHO) horizontal work array along
+* . the bottom edge,
+* . - an at-least-NW-but-more-is-better (NHV-by-NW)
+* . vertical work array along the left-hand-edge.
+* . ====
+*
+ KV = N - NW + 1
+ KT = NW + 1
+ NHO = ( N-NW-1 ) - KT + 1
+ KWV = NW + 2
+ NVE = ( N-NW ) - KWV + 1
+*
+* ==== Aggressive early deflation ====
+*
+ CALL DLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
+ $ IHIZ, Z, LDZ, LS, LD, WR, WI, H( KV, 1 ), LDH,
+ $ NHO, H( KV, KT ), LDH, NVE, H( KWV, 1 ), LDH,
+ $ WORK, LWORK )
+*
+* ==== Adjust KBOT accounting for new deflations. ====
+*
+ KBOT = KBOT - LD
+*
+* ==== KS points to the shifts. ====
+*
+ KS = KBOT - LS + 1
+*
+* ==== Skip an expensive QR sweep if there is a (partly
+* . heuristic) reason to expect that many eigenvalues
+* . will deflate without it. Here, the QR sweep is
+* . skipped if many eigenvalues have just been deflated
+* . or if the remaining active block is small.
+*
+ IF( ( LD.EQ.0 ) .OR. ( ( 100*LD.LE.NW*NIBBLE ) .AND. ( KBOT-
+ $ KTOP+1.GT.MIN( NMIN, NWMAX ) ) ) ) THEN
+*
+* ==== NS = nominal number of simultaneous shifts.
+* . This may be lowered (slightly) if DLAQR2
+* . did not provide that many shifts. ====
+*
+ NS = MIN( NSMAX, NSR, MAX( 2, KBOT-KTOP ) )
+ NS = NS - MOD( NS, 2 )
+*
+* ==== If there have been no deflations
+* . in a multiple of KEXSH iterations,
+* . then try exceptional shifts.
+* . Otherwise use shifts provided by
+* . DLAQR2 above or from the eigenvalues
+* . of a trailing principal submatrix. ====
+*
+ IF( MOD( NDFL, KEXSH ).EQ.0 ) THEN
+ KS = KBOT - NS + 1
+ DO 30 I = KBOT, MAX( KS+1, KTOP+2 ), -2
+ SS = ABS( H( I, I-1 ) ) + ABS( H( I-1, I-2 ) )
+ AA = WILK1*SS + H( I, I )
+ BB = SS
+ CC = WILK2*SS
+ DD = AA
+ CALL DLANV2( AA, BB, CC, DD, WR( I-1 ), WI( I-1 ),
+ $ WR( I ), WI( I ), CS, SN )
+ 30 CONTINUE
+ IF( KS.EQ.KTOP ) THEN
+ WR( KS+1 ) = H( KS+1, KS+1 )
+ WI( KS+1 ) = ZERO
+ WR( KS ) = WR( KS+1 )
+ WI( KS ) = WI( KS+1 )
+ END IF
+ ELSE
+*
+* ==== Got NS/2 or fewer shifts? Use DLAHQR
+* . on a trailing principal submatrix to
+* . get more. (Since NS.LE.NSMAX.LE.(N+6)/9,
+* . there is enough space below the subdiagonal
+* . to fit an NS-by-NS scratch array.) ====
+*
+ IF( KBOT-KS+1.LE.NS / 2 ) THEN
+ KS = KBOT - NS + 1
+ KT = N - NS + 1
+ CALL DLACPY( 'A', NS, NS, H( KS, KS ), LDH,
+ $ H( KT, 1 ), LDH )
+ CALL DLAHQR( .false., .false., NS, 1, NS,
+ $ H( KT, 1 ), LDH, WR( KS ), WI( KS ),
+ $ 1, 1, ZDUM, 1, INF )
+ KS = KS + INF
+*
+* ==== In case of a rare QR failure use
+* . eigenvalues of the trailing 2-by-2
+* . principal submatrix. ====
+*
+ IF( KS.GE.KBOT ) THEN
+ AA = H( KBOT-1, KBOT-1 )
+ CC = H( KBOT, KBOT-1 )
+ BB = H( KBOT-1, KBOT )
+ DD = H( KBOT, KBOT )
+ CALL DLANV2( AA, BB, CC, DD, WR( KBOT-1 ),
+ $ WI( KBOT-1 ), WR( KBOT ),
+ $ WI( KBOT ), CS, SN )
+ KS = KBOT - 1
+ END IF
+ END IF
+*
+ IF( KBOT-KS+1.GT.NS ) THEN
+*
+* ==== Sort the shifts (Helps a little)
+* . Bubble sort keeps complex conjugate
+* . pairs together. ====
+*
+ SORTED = .false.
+ DO 50 K = KBOT, KS + 1, -1
+ IF( SORTED )
+ $ GO TO 60
+ SORTED = .true.
+ DO 40 I = KS, K - 1
+ IF( ABS( WR( I ) )+ABS( WI( I ) ).LT.
+ $ ABS( WR( I+1 ) )+ABS( WI( I+1 ) ) ) THEN
+ SORTED = .false.
+*
+ SWAP = WR( I )
+ WR( I ) = WR( I+1 )
+ WR( I+1 ) = SWAP
+*
+ SWAP = WI( I )
+ WI( I ) = WI( I+1 )
+ WI( I+1 ) = SWAP
+ END IF
+ 40 CONTINUE
+ 50 CONTINUE
+ 60 CONTINUE
+ END IF
+*
+* ==== Shuffle shifts into pairs of real shifts
+* . and pairs of complex conjugate shifts
+* . assuming complex conjugate shifts are
+* . already adjacent to one another. (Yes,
+* . they are.) ====
+*
+ DO 70 I = KBOT, KS + 2, -2
+ IF( WI( I ).NE.-WI( I-1 ) ) THEN
+*
+ SWAP = WR( I )
+ WR( I ) = WR( I-1 )
+ WR( I-1 ) = WR( I-2 )
+ WR( I-2 ) = SWAP
+*
+ SWAP = WI( I )
+ WI( I ) = WI( I-1 )
+ WI( I-1 ) = WI( I-2 )
+ WI( I-2 ) = SWAP
+ END IF
+ 70 CONTINUE
+ END IF
+*
+* ==== If there are only two shifts and both are
+* . real, then use only one. ====
+*
+ IF( KBOT-KS+1.EQ.2 ) THEN
+ IF( WI( KBOT ).EQ.ZERO ) THEN
+ IF( ABS( WR( KBOT )-H( KBOT, KBOT ) ).LT.
+ $ ABS( WR( KBOT-1 )-H( KBOT, KBOT ) ) ) THEN
+ WR( KBOT-1 ) = WR( KBOT )
+ ELSE
+ WR( KBOT ) = WR( KBOT-1 )
+ END IF
+ END IF
+ END IF
+*
+* ==== Use up to NS of the the smallest magnatiude
+* . shifts. If there aren't NS shifts available,
+* . then use them all, possibly dropping one to
+* . make the number of shifts even. ====
+*
+ NS = MIN( NS, KBOT-KS+1 )
+ NS = NS - MOD( NS, 2 )
+ KS = KBOT - NS + 1
+*
+* ==== Small-bulge multi-shift QR sweep:
+* . split workspace under the subdiagonal into
+* . - a KDU-by-KDU work array U in the lower
+* . left-hand-corner,
+* . - a KDU-by-at-least-KDU-but-more-is-better
+* . (KDU-by-NHo) horizontal work array WH along
+* . the bottom edge,
+* . - and an at-least-KDU-but-more-is-better-by-KDU
+* . (NVE-by-KDU) vertical work WV arrow along
+* . the left-hand-edge. ====
+*
+ KDU = 3*NS - 3
+ KU = N - KDU + 1
+ KWH = KDU + 1
+ NHO = ( N-KDU+1-4 ) - ( KDU+1 ) + 1
+ KWV = KDU + 4
+ NVE = N - KDU - KWV + 1
+*
+* ==== Small-bulge multi-shift QR sweep ====
+*
+ CALL DLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NS,
+ $ WR( KS ), WI( KS ), H, LDH, ILOZ, IHIZ, Z,
+ $ LDZ, WORK, 3, H( KU, 1 ), LDH, NVE,
+ $ H( KWV, 1 ), LDH, NHO, H( KU, KWH ), LDH )
+ END IF
+*
+* ==== Note progress (or the lack of it). ====
+*
+ IF( LD.GT.0 ) THEN
+ NDFL = 1
+ ELSE
+ NDFL = NDFL + 1
+ END IF
+*
+* ==== End of main loop ====
+ 80 CONTINUE
+*
+* ==== Iteration limit exceeded. Set INFO to show where
+* . the problem occurred and exit. ====
+*
+ INFO = KBOT
+ 90 CONTINUE
+ END IF
+*
+* ==== Return the optimal value of LWORK. ====
+*
+ WORK( 1 ) = DBLE( LWKOPT )
+*
+* ==== End of DLAQR4 ====
+*
+ END