summaryrefslogtreecommitdiff
path: root/src/fortran/lapack/dlantr.f
diff options
context:
space:
mode:
authorSiddhesh Wani2015-05-25 14:46:31 +0530
committerSiddhesh Wani2015-05-25 14:46:31 +0530
commitdb464f35f5a10b58d9ed1085e0b462689adee583 (patch)
treede5cdbc71a54765d9fec33414630ae2c8904c9b8 /src/fortran/lapack/dlantr.f
downloadScilab2C_fossee_old-db464f35f5a10b58d9ed1085e0b462689adee583.tar.gz
Scilab2C_fossee_old-db464f35f5a10b58d9ed1085e0b462689adee583.tar.bz2
Scilab2C_fossee_old-db464f35f5a10b58d9ed1085e0b462689adee583.zip
Original Version
Diffstat (limited to 'src/fortran/lapack/dlantr.f')
-rw-r--r--src/fortran/lapack/dlantr.f276
1 files changed, 276 insertions, 0 deletions
diff --git a/src/fortran/lapack/dlantr.f b/src/fortran/lapack/dlantr.f
new file mode 100644
index 0000000..92debd3
--- /dev/null
+++ b/src/fortran/lapack/dlantr.f
@@ -0,0 +1,276 @@
+ DOUBLE PRECISION FUNCTION DLANTR( NORM, UPLO, DIAG, M, N, A, LDA,
+ $ WORK )
+*
+* -- LAPACK auxiliary routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER DIAG, NORM, UPLO
+ INTEGER LDA, M, N
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION A( LDA, * ), WORK( * )
+* ..
+*
+* Purpose
+* =======
+*
+* DLANTR returns the value of the one norm, or the Frobenius norm, or
+* the infinity norm, or the element of largest absolute value of a
+* trapezoidal or triangular matrix A.
+*
+* Description
+* ===========
+*
+* DLANTR returns the value
+*
+* DLANTR = ( max(abs(A(i,j))), NORM = 'M' or 'm'
+* (
+* ( norm1(A), NORM = '1', 'O' or 'o'
+* (
+* ( normI(A), NORM = 'I' or 'i'
+* (
+* ( normF(A), NORM = 'F', 'f', 'E' or 'e'
+*
+* where norm1 denotes the one norm of a matrix (maximum column sum),
+* normI denotes the infinity norm of a matrix (maximum row sum) and
+* normF denotes the Frobenius norm of a matrix (square root of sum of
+* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
+*
+* Arguments
+* =========
+*
+* NORM (input) CHARACTER*1
+* Specifies the value to be returned in DLANTR as described
+* above.
+*
+* UPLO (input) CHARACTER*1
+* Specifies whether the matrix A is upper or lower trapezoidal.
+* = 'U': Upper trapezoidal
+* = 'L': Lower trapezoidal
+* Note that A is triangular instead of trapezoidal if M = N.
+*
+* DIAG (input) CHARACTER*1
+* Specifies whether or not the matrix A has unit diagonal.
+* = 'N': Non-unit diagonal
+* = 'U': Unit diagonal
+*
+* M (input) INTEGER
+* The number of rows of the matrix A. M >= 0, and if
+* UPLO = 'U', M <= N. When M = 0, DLANTR is set to zero.
+*
+* N (input) INTEGER
+* The number of columns of the matrix A. N >= 0, and if
+* UPLO = 'L', N <= M. When N = 0, DLANTR is set to zero.
+*
+* A (input) DOUBLE PRECISION array, dimension (LDA,N)
+* The trapezoidal matrix A (A is triangular if M = N).
+* If UPLO = 'U', the leading m by n upper trapezoidal part of
+* the array A contains the upper trapezoidal matrix, and the
+* strictly lower triangular part of A is not referenced.
+* If UPLO = 'L', the leading m by n lower trapezoidal part of
+* the array A contains the lower trapezoidal matrix, and the
+* strictly upper triangular part of A is not referenced. Note
+* that when DIAG = 'U', the diagonal elements of A are not
+* referenced and are assumed to be one.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(M,1).
+*
+* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
+* where LWORK >= M when NORM = 'I'; otherwise, WORK is not
+* referenced.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ONE, ZERO
+ PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL UDIAG
+ INTEGER I, J
+ DOUBLE PRECISION SCALE, SUM, VALUE
+* ..
+* .. External Subroutines ..
+ EXTERNAL DLASSQ
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, MAX, MIN, SQRT
+* ..
+* .. Executable Statements ..
+*
+ IF( MIN( M, N ).EQ.0 ) THEN
+ VALUE = ZERO
+ ELSE IF( LSAME( NORM, 'M' ) ) THEN
+*
+* Find max(abs(A(i,j))).
+*
+ IF( LSAME( DIAG, 'U' ) ) THEN
+ VALUE = ONE
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ DO 20 J = 1, N
+ DO 10 I = 1, MIN( M, J-1 )
+ VALUE = MAX( VALUE, ABS( A( I, J ) ) )
+ 10 CONTINUE
+ 20 CONTINUE
+ ELSE
+ DO 40 J = 1, N
+ DO 30 I = J + 1, M
+ VALUE = MAX( VALUE, ABS( A( I, J ) ) )
+ 30 CONTINUE
+ 40 CONTINUE
+ END IF
+ ELSE
+ VALUE = ZERO
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ DO 60 J = 1, N
+ DO 50 I = 1, MIN( M, J )
+ VALUE = MAX( VALUE, ABS( A( I, J ) ) )
+ 50 CONTINUE
+ 60 CONTINUE
+ ELSE
+ DO 80 J = 1, N
+ DO 70 I = J, M
+ VALUE = MAX( VALUE, ABS( A( I, J ) ) )
+ 70 CONTINUE
+ 80 CONTINUE
+ END IF
+ END IF
+ ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
+*
+* Find norm1(A).
+*
+ VALUE = ZERO
+ UDIAG = LSAME( DIAG, 'U' )
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ DO 110 J = 1, N
+ IF( ( UDIAG ) .AND. ( J.LE.M ) ) THEN
+ SUM = ONE
+ DO 90 I = 1, J - 1
+ SUM = SUM + ABS( A( I, J ) )
+ 90 CONTINUE
+ ELSE
+ SUM = ZERO
+ DO 100 I = 1, MIN( M, J )
+ SUM = SUM + ABS( A( I, J ) )
+ 100 CONTINUE
+ END IF
+ VALUE = MAX( VALUE, SUM )
+ 110 CONTINUE
+ ELSE
+ DO 140 J = 1, N
+ IF( UDIAG ) THEN
+ SUM = ONE
+ DO 120 I = J + 1, M
+ SUM = SUM + ABS( A( I, J ) )
+ 120 CONTINUE
+ ELSE
+ SUM = ZERO
+ DO 130 I = J, M
+ SUM = SUM + ABS( A( I, J ) )
+ 130 CONTINUE
+ END IF
+ VALUE = MAX( VALUE, SUM )
+ 140 CONTINUE
+ END IF
+ ELSE IF( LSAME( NORM, 'I' ) ) THEN
+*
+* Find normI(A).
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ IF( LSAME( DIAG, 'U' ) ) THEN
+ DO 150 I = 1, M
+ WORK( I ) = ONE
+ 150 CONTINUE
+ DO 170 J = 1, N
+ DO 160 I = 1, MIN( M, J-1 )
+ WORK( I ) = WORK( I ) + ABS( A( I, J ) )
+ 160 CONTINUE
+ 170 CONTINUE
+ ELSE
+ DO 180 I = 1, M
+ WORK( I ) = ZERO
+ 180 CONTINUE
+ DO 200 J = 1, N
+ DO 190 I = 1, MIN( M, J )
+ WORK( I ) = WORK( I ) + ABS( A( I, J ) )
+ 190 CONTINUE
+ 200 CONTINUE
+ END IF
+ ELSE
+ IF( LSAME( DIAG, 'U' ) ) THEN
+ DO 210 I = 1, N
+ WORK( I ) = ONE
+ 210 CONTINUE
+ DO 220 I = N + 1, M
+ WORK( I ) = ZERO
+ 220 CONTINUE
+ DO 240 J = 1, N
+ DO 230 I = J + 1, M
+ WORK( I ) = WORK( I ) + ABS( A( I, J ) )
+ 230 CONTINUE
+ 240 CONTINUE
+ ELSE
+ DO 250 I = 1, M
+ WORK( I ) = ZERO
+ 250 CONTINUE
+ DO 270 J = 1, N
+ DO 260 I = J, M
+ WORK( I ) = WORK( I ) + ABS( A( I, J ) )
+ 260 CONTINUE
+ 270 CONTINUE
+ END IF
+ END IF
+ VALUE = ZERO
+ DO 280 I = 1, M
+ VALUE = MAX( VALUE, WORK( I ) )
+ 280 CONTINUE
+ ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
+*
+* Find normF(A).
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+ IF( LSAME( DIAG, 'U' ) ) THEN
+ SCALE = ONE
+ SUM = MIN( M, N )
+ DO 290 J = 2, N
+ CALL DLASSQ( MIN( M, J-1 ), A( 1, J ), 1, SCALE, SUM )
+ 290 CONTINUE
+ ELSE
+ SCALE = ZERO
+ SUM = ONE
+ DO 300 J = 1, N
+ CALL DLASSQ( MIN( M, J ), A( 1, J ), 1, SCALE, SUM )
+ 300 CONTINUE
+ END IF
+ ELSE
+ IF( LSAME( DIAG, 'U' ) ) THEN
+ SCALE = ONE
+ SUM = MIN( M, N )
+ DO 310 J = 1, N
+ CALL DLASSQ( M-J, A( MIN( M, J+1 ), J ), 1, SCALE,
+ $ SUM )
+ 310 CONTINUE
+ ELSE
+ SCALE = ZERO
+ SUM = ONE
+ DO 320 J = 1, N
+ CALL DLASSQ( M-J+1, A( J, J ), 1, SCALE, SUM )
+ 320 CONTINUE
+ END IF
+ END IF
+ VALUE = SCALE*SQRT( SUM )
+ END IF
+*
+ DLANTR = VALUE
+ RETURN
+*
+* End of DLANTR
+*
+ END