diff options
author | Siddhesh Wani | 2015-05-25 14:46:31 +0530 |
---|---|---|
committer | Siddhesh Wani | 2015-05-25 14:46:31 +0530 |
commit | db464f35f5a10b58d9ed1085e0b462689adee583 (patch) | |
tree | de5cdbc71a54765d9fec33414630ae2c8904c9b8 /src/fortran/lapack/dlaln2.f | |
download | Scilab2C_fossee_old-db464f35f5a10b58d9ed1085e0b462689adee583.tar.gz Scilab2C_fossee_old-db464f35f5a10b58d9ed1085e0b462689adee583.tar.bz2 Scilab2C_fossee_old-db464f35f5a10b58d9ed1085e0b462689adee583.zip |
Original Version
Diffstat (limited to 'src/fortran/lapack/dlaln2.f')
-rw-r--r-- | src/fortran/lapack/dlaln2.f | 507 |
1 files changed, 507 insertions, 0 deletions
diff --git a/src/fortran/lapack/dlaln2.f b/src/fortran/lapack/dlaln2.f new file mode 100644 index 0000000..7c99bdb --- /dev/null +++ b/src/fortran/lapack/dlaln2.f @@ -0,0 +1,507 @@ + SUBROUTINE DLALN2( LTRANS, NA, NW, SMIN, CA, A, LDA, D1, D2, B, + $ LDB, WR, WI, X, LDX, SCALE, XNORM, INFO ) +* +* -- LAPACK auxiliary routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + LOGICAL LTRANS + INTEGER INFO, LDA, LDB, LDX, NA, NW + DOUBLE PRECISION CA, D1, D2, SCALE, SMIN, WI, WR, XNORM +* .. +* .. Array Arguments .. + DOUBLE PRECISION A( LDA, * ), B( LDB, * ), X( LDX, * ) +* .. +* +* Purpose +* ======= +* +* DLALN2 solves a system of the form (ca A - w D ) X = s B +* or (ca A' - w D) X = s B with possible scaling ("s") and +* perturbation of A. (A' means A-transpose.) +* +* A is an NA x NA real matrix, ca is a real scalar, D is an NA x NA +* real diagonal matrix, w is a real or complex value, and X and B are +* NA x 1 matrices -- real if w is real, complex if w is complex. NA +* may be 1 or 2. +* +* If w is complex, X and B are represented as NA x 2 matrices, +* the first column of each being the real part and the second +* being the imaginary part. +* +* "s" is a scaling factor (.LE. 1), computed by DLALN2, which is +* so chosen that X can be computed without overflow. X is further +* scaled if necessary to assure that norm(ca A - w D)*norm(X) is less +* than overflow. +* +* If both singular values of (ca A - w D) are less than SMIN, +* SMIN*identity will be used instead of (ca A - w D). If only one +* singular value is less than SMIN, one element of (ca A - w D) will be +* perturbed enough to make the smallest singular value roughly SMIN. +* If both singular values are at least SMIN, (ca A - w D) will not be +* perturbed. In any case, the perturbation will be at most some small +* multiple of max( SMIN, ulp*norm(ca A - w D) ). The singular values +* are computed by infinity-norm approximations, and thus will only be +* correct to a factor of 2 or so. +* +* Note: all input quantities are assumed to be smaller than overflow +* by a reasonable factor. (See BIGNUM.) +* +* Arguments +* ========== +* +* LTRANS (input) LOGICAL +* =.TRUE.: A-transpose will be used. +* =.FALSE.: A will be used (not transposed.) +* +* NA (input) INTEGER +* The size of the matrix A. It may (only) be 1 or 2. +* +* NW (input) INTEGER +* 1 if "w" is real, 2 if "w" is complex. It may only be 1 +* or 2. +* +* SMIN (input) DOUBLE PRECISION +* The desired lower bound on the singular values of A. This +* should be a safe distance away from underflow or overflow, +* say, between (underflow/machine precision) and (machine +* precision * overflow ). (See BIGNUM and ULP.) +* +* CA (input) DOUBLE PRECISION +* The coefficient c, which A is multiplied by. +* +* A (input) DOUBLE PRECISION array, dimension (LDA,NA) +* The NA x NA matrix A. +* +* LDA (input) INTEGER +* The leading dimension of A. It must be at least NA. +* +* D1 (input) DOUBLE PRECISION +* The 1,1 element in the diagonal matrix D. +* +* D2 (input) DOUBLE PRECISION +* The 2,2 element in the diagonal matrix D. Not used if NW=1. +* +* B (input) DOUBLE PRECISION array, dimension (LDB,NW) +* The NA x NW matrix B (right-hand side). If NW=2 ("w" is +* complex), column 1 contains the real part of B and column 2 +* contains the imaginary part. +* +* LDB (input) INTEGER +* The leading dimension of B. It must be at least NA. +* +* WR (input) DOUBLE PRECISION +* The real part of the scalar "w". +* +* WI (input) DOUBLE PRECISION +* The imaginary part of the scalar "w". Not used if NW=1. +* +* X (output) DOUBLE PRECISION array, dimension (LDX,NW) +* The NA x NW matrix X (unknowns), as computed by DLALN2. +* If NW=2 ("w" is complex), on exit, column 1 will contain +* the real part of X and column 2 will contain the imaginary +* part. +* +* LDX (input) INTEGER +* The leading dimension of X. It must be at least NA. +* +* SCALE (output) DOUBLE PRECISION +* The scale factor that B must be multiplied by to insure +* that overflow does not occur when computing X. Thus, +* (ca A - w D) X will be SCALE*B, not B (ignoring +* perturbations of A.) It will be at most 1. +* +* XNORM (output) DOUBLE PRECISION +* The infinity-norm of X, when X is regarded as an NA x NW +* real matrix. +* +* INFO (output) INTEGER +* An error flag. It will be set to zero if no error occurs, +* a negative number if an argument is in error, or a positive +* number if ca A - w D had to be perturbed. +* The possible values are: +* = 0: No error occurred, and (ca A - w D) did not have to be +* perturbed. +* = 1: (ca A - w D) had to be perturbed to make its smallest +* (or only) singular value greater than SMIN. +* NOTE: In the interests of speed, this routine does not +* check the inputs for errors. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO, ONE + PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) + DOUBLE PRECISION TWO + PARAMETER ( TWO = 2.0D0 ) +* .. +* .. Local Scalars .. + INTEGER ICMAX, J + DOUBLE PRECISION BBND, BI1, BI2, BIGNUM, BNORM, BR1, BR2, CI21, + $ CI22, CMAX, CNORM, CR21, CR22, CSI, CSR, LI21, + $ LR21, SMINI, SMLNUM, TEMP, U22ABS, UI11, UI11R, + $ UI12, UI12S, UI22, UR11, UR11R, UR12, UR12S, + $ UR22, XI1, XI2, XR1, XR2 +* .. +* .. Local Arrays .. + LOGICAL RSWAP( 4 ), ZSWAP( 4 ) + INTEGER IPIVOT( 4, 4 ) + DOUBLE PRECISION CI( 2, 2 ), CIV( 4 ), CR( 2, 2 ), CRV( 4 ) +* .. +* .. External Functions .. + DOUBLE PRECISION DLAMCH + EXTERNAL DLAMCH +* .. +* .. External Subroutines .. + EXTERNAL DLADIV +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, MAX +* .. +* .. Equivalences .. + EQUIVALENCE ( CI( 1, 1 ), CIV( 1 ) ), + $ ( CR( 1, 1 ), CRV( 1 ) ) +* .. +* .. Data statements .. + DATA ZSWAP / .FALSE., .FALSE., .TRUE., .TRUE. / + DATA RSWAP / .FALSE., .TRUE., .FALSE., .TRUE. / + DATA IPIVOT / 1, 2, 3, 4, 2, 1, 4, 3, 3, 4, 1, 2, 4, + $ 3, 2, 1 / +* .. +* .. Executable Statements .. +* +* Compute BIGNUM +* + SMLNUM = TWO*DLAMCH( 'Safe minimum' ) + BIGNUM = ONE / SMLNUM + SMINI = MAX( SMIN, SMLNUM ) +* +* Don't check for input errors +* + INFO = 0 +* +* Standard Initializations +* + SCALE = ONE +* + IF( NA.EQ.1 ) THEN +* +* 1 x 1 (i.e., scalar) system C X = B +* + IF( NW.EQ.1 ) THEN +* +* Real 1x1 system. +* +* C = ca A - w D +* + CSR = CA*A( 1, 1 ) - WR*D1 + CNORM = ABS( CSR ) +* +* If | C | < SMINI, use C = SMINI +* + IF( CNORM.LT.SMINI ) THEN + CSR = SMINI + CNORM = SMINI + INFO = 1 + END IF +* +* Check scaling for X = B / C +* + BNORM = ABS( B( 1, 1 ) ) + IF( CNORM.LT.ONE .AND. BNORM.GT.ONE ) THEN + IF( BNORM.GT.BIGNUM*CNORM ) + $ SCALE = ONE / BNORM + END IF +* +* Compute X +* + X( 1, 1 ) = ( B( 1, 1 )*SCALE ) / CSR + XNORM = ABS( X( 1, 1 ) ) + ELSE +* +* Complex 1x1 system (w is complex) +* +* C = ca A - w D +* + CSR = CA*A( 1, 1 ) - WR*D1 + CSI = -WI*D1 + CNORM = ABS( CSR ) + ABS( CSI ) +* +* If | C | < SMINI, use C = SMINI +* + IF( CNORM.LT.SMINI ) THEN + CSR = SMINI + CSI = ZERO + CNORM = SMINI + INFO = 1 + END IF +* +* Check scaling for X = B / C +* + BNORM = ABS( B( 1, 1 ) ) + ABS( B( 1, 2 ) ) + IF( CNORM.LT.ONE .AND. BNORM.GT.ONE ) THEN + IF( BNORM.GT.BIGNUM*CNORM ) + $ SCALE = ONE / BNORM + END IF +* +* Compute X +* + CALL DLADIV( SCALE*B( 1, 1 ), SCALE*B( 1, 2 ), CSR, CSI, + $ X( 1, 1 ), X( 1, 2 ) ) + XNORM = ABS( X( 1, 1 ) ) + ABS( X( 1, 2 ) ) + END IF +* + ELSE +* +* 2x2 System +* +* Compute the real part of C = ca A - w D (or ca A' - w D ) +* + CR( 1, 1 ) = CA*A( 1, 1 ) - WR*D1 + CR( 2, 2 ) = CA*A( 2, 2 ) - WR*D2 + IF( LTRANS ) THEN + CR( 1, 2 ) = CA*A( 2, 1 ) + CR( 2, 1 ) = CA*A( 1, 2 ) + ELSE + CR( 2, 1 ) = CA*A( 2, 1 ) + CR( 1, 2 ) = CA*A( 1, 2 ) + END IF +* + IF( NW.EQ.1 ) THEN +* +* Real 2x2 system (w is real) +* +* Find the largest element in C +* + CMAX = ZERO + ICMAX = 0 +* + DO 10 J = 1, 4 + IF( ABS( CRV( J ) ).GT.CMAX ) THEN + CMAX = ABS( CRV( J ) ) + ICMAX = J + END IF + 10 CONTINUE +* +* If norm(C) < SMINI, use SMINI*identity. +* + IF( CMAX.LT.SMINI ) THEN + BNORM = MAX( ABS( B( 1, 1 ) ), ABS( B( 2, 1 ) ) ) + IF( SMINI.LT.ONE .AND. BNORM.GT.ONE ) THEN + IF( BNORM.GT.BIGNUM*SMINI ) + $ SCALE = ONE / BNORM + END IF + TEMP = SCALE / SMINI + X( 1, 1 ) = TEMP*B( 1, 1 ) + X( 2, 1 ) = TEMP*B( 2, 1 ) + XNORM = TEMP*BNORM + INFO = 1 + RETURN + END IF +* +* Gaussian elimination with complete pivoting. +* + UR11 = CRV( ICMAX ) + CR21 = CRV( IPIVOT( 2, ICMAX ) ) + UR12 = CRV( IPIVOT( 3, ICMAX ) ) + CR22 = CRV( IPIVOT( 4, ICMAX ) ) + UR11R = ONE / UR11 + LR21 = UR11R*CR21 + UR22 = CR22 - UR12*LR21 +* +* If smaller pivot < SMINI, use SMINI +* + IF( ABS( UR22 ).LT.SMINI ) THEN + UR22 = SMINI + INFO = 1 + END IF + IF( RSWAP( ICMAX ) ) THEN + BR1 = B( 2, 1 ) + BR2 = B( 1, 1 ) + ELSE + BR1 = B( 1, 1 ) + BR2 = B( 2, 1 ) + END IF + BR2 = BR2 - LR21*BR1 + BBND = MAX( ABS( BR1*( UR22*UR11R ) ), ABS( BR2 ) ) + IF( BBND.GT.ONE .AND. ABS( UR22 ).LT.ONE ) THEN + IF( BBND.GE.BIGNUM*ABS( UR22 ) ) + $ SCALE = ONE / BBND + END IF +* + XR2 = ( BR2*SCALE ) / UR22 + XR1 = ( SCALE*BR1 )*UR11R - XR2*( UR11R*UR12 ) + IF( ZSWAP( ICMAX ) ) THEN + X( 1, 1 ) = XR2 + X( 2, 1 ) = XR1 + ELSE + X( 1, 1 ) = XR1 + X( 2, 1 ) = XR2 + END IF + XNORM = MAX( ABS( XR1 ), ABS( XR2 ) ) +* +* Further scaling if norm(A) norm(X) > overflow +* + IF( XNORM.GT.ONE .AND. CMAX.GT.ONE ) THEN + IF( XNORM.GT.BIGNUM / CMAX ) THEN + TEMP = CMAX / BIGNUM + X( 1, 1 ) = TEMP*X( 1, 1 ) + X( 2, 1 ) = TEMP*X( 2, 1 ) + XNORM = TEMP*XNORM + SCALE = TEMP*SCALE + END IF + END IF + ELSE +* +* Complex 2x2 system (w is complex) +* +* Find the largest element in C +* + CI( 1, 1 ) = -WI*D1 + CI( 2, 1 ) = ZERO + CI( 1, 2 ) = ZERO + CI( 2, 2 ) = -WI*D2 + CMAX = ZERO + ICMAX = 0 +* + DO 20 J = 1, 4 + IF( ABS( CRV( J ) )+ABS( CIV( J ) ).GT.CMAX ) THEN + CMAX = ABS( CRV( J ) ) + ABS( CIV( J ) ) + ICMAX = J + END IF + 20 CONTINUE +* +* If norm(C) < SMINI, use SMINI*identity. +* + IF( CMAX.LT.SMINI ) THEN + BNORM = MAX( ABS( B( 1, 1 ) )+ABS( B( 1, 2 ) ), + $ ABS( B( 2, 1 ) )+ABS( B( 2, 2 ) ) ) + IF( SMINI.LT.ONE .AND. BNORM.GT.ONE ) THEN + IF( BNORM.GT.BIGNUM*SMINI ) + $ SCALE = ONE / BNORM + END IF + TEMP = SCALE / SMINI + X( 1, 1 ) = TEMP*B( 1, 1 ) + X( 2, 1 ) = TEMP*B( 2, 1 ) + X( 1, 2 ) = TEMP*B( 1, 2 ) + X( 2, 2 ) = TEMP*B( 2, 2 ) + XNORM = TEMP*BNORM + INFO = 1 + RETURN + END IF +* +* Gaussian elimination with complete pivoting. +* + UR11 = CRV( ICMAX ) + UI11 = CIV( ICMAX ) + CR21 = CRV( IPIVOT( 2, ICMAX ) ) + CI21 = CIV( IPIVOT( 2, ICMAX ) ) + UR12 = CRV( IPIVOT( 3, ICMAX ) ) + UI12 = CIV( IPIVOT( 3, ICMAX ) ) + CR22 = CRV( IPIVOT( 4, ICMAX ) ) + CI22 = CIV( IPIVOT( 4, ICMAX ) ) + IF( ICMAX.EQ.1 .OR. ICMAX.EQ.4 ) THEN +* +* Code when off-diagonals of pivoted C are real +* + IF( ABS( UR11 ).GT.ABS( UI11 ) ) THEN + TEMP = UI11 / UR11 + UR11R = ONE / ( UR11*( ONE+TEMP**2 ) ) + UI11R = -TEMP*UR11R + ELSE + TEMP = UR11 / UI11 + UI11R = -ONE / ( UI11*( ONE+TEMP**2 ) ) + UR11R = -TEMP*UI11R + END IF + LR21 = CR21*UR11R + LI21 = CR21*UI11R + UR12S = UR12*UR11R + UI12S = UR12*UI11R + UR22 = CR22 - UR12*LR21 + UI22 = CI22 - UR12*LI21 + ELSE +* +* Code when diagonals of pivoted C are real +* + UR11R = ONE / UR11 + UI11R = ZERO + LR21 = CR21*UR11R + LI21 = CI21*UR11R + UR12S = UR12*UR11R + UI12S = UI12*UR11R + UR22 = CR22 - UR12*LR21 + UI12*LI21 + UI22 = -UR12*LI21 - UI12*LR21 + END IF + U22ABS = ABS( UR22 ) + ABS( UI22 ) +* +* If smaller pivot < SMINI, use SMINI +* + IF( U22ABS.LT.SMINI ) THEN + UR22 = SMINI + UI22 = ZERO + INFO = 1 + END IF + IF( RSWAP( ICMAX ) ) THEN + BR2 = B( 1, 1 ) + BR1 = B( 2, 1 ) + BI2 = B( 1, 2 ) + BI1 = B( 2, 2 ) + ELSE + BR1 = B( 1, 1 ) + BR2 = B( 2, 1 ) + BI1 = B( 1, 2 ) + BI2 = B( 2, 2 ) + END IF + BR2 = BR2 - LR21*BR1 + LI21*BI1 + BI2 = BI2 - LI21*BR1 - LR21*BI1 + BBND = MAX( ( ABS( BR1 )+ABS( BI1 ) )* + $ ( U22ABS*( ABS( UR11R )+ABS( UI11R ) ) ), + $ ABS( BR2 )+ABS( BI2 ) ) + IF( BBND.GT.ONE .AND. U22ABS.LT.ONE ) THEN + IF( BBND.GE.BIGNUM*U22ABS ) THEN + SCALE = ONE / BBND + BR1 = SCALE*BR1 + BI1 = SCALE*BI1 + BR2 = SCALE*BR2 + BI2 = SCALE*BI2 + END IF + END IF +* + CALL DLADIV( BR2, BI2, UR22, UI22, XR2, XI2 ) + XR1 = UR11R*BR1 - UI11R*BI1 - UR12S*XR2 + UI12S*XI2 + XI1 = UI11R*BR1 + UR11R*BI1 - UI12S*XR2 - UR12S*XI2 + IF( ZSWAP( ICMAX ) ) THEN + X( 1, 1 ) = XR2 + X( 2, 1 ) = XR1 + X( 1, 2 ) = XI2 + X( 2, 2 ) = XI1 + ELSE + X( 1, 1 ) = XR1 + X( 2, 1 ) = XR2 + X( 1, 2 ) = XI1 + X( 2, 2 ) = XI2 + END IF + XNORM = MAX( ABS( XR1 )+ABS( XI1 ), ABS( XR2 )+ABS( XI2 ) ) +* +* Further scaling if norm(A) norm(X) > overflow +* + IF( XNORM.GT.ONE .AND. CMAX.GT.ONE ) THEN + IF( XNORM.GT.BIGNUM / CMAX ) THEN + TEMP = CMAX / BIGNUM + X( 1, 1 ) = TEMP*X( 1, 1 ) + X( 2, 1 ) = TEMP*X( 2, 1 ) + X( 1, 2 ) = TEMP*X( 1, 2 ) + X( 2, 2 ) = TEMP*X( 2, 2 ) + XNORM = TEMP*XNORM + SCALE = TEMP*SCALE + END IF + END IF + END IF + END IF +* + RETURN +* +* End of DLALN2 +* + END |