diff options
author | Siddhesh Wani | 2015-05-25 14:46:31 +0530 |
---|---|---|
committer | Siddhesh Wani | 2015-05-25 14:46:31 +0530 |
commit | db464f35f5a10b58d9ed1085e0b462689adee583 (patch) | |
tree | de5cdbc71a54765d9fec33414630ae2c8904c9b8 /src/c/signalProcessing/fft/dfftmx.c | |
download | Scilab2C_fossee_old-db464f35f5a10b58d9ed1085e0b462689adee583.tar.gz Scilab2C_fossee_old-db464f35f5a10b58d9ed1085e0b462689adee583.tar.bz2 Scilab2C_fossee_old-db464f35f5a10b58d9ed1085e0b462689adee583.zip |
Original Version
Diffstat (limited to 'src/c/signalProcessing/fft/dfftmx.c')
-rw-r--r-- | src/c/signalProcessing/fft/dfftmx.c | 1211 |
1 files changed, 1211 insertions, 0 deletions
diff --git a/src/c/signalProcessing/fft/dfftmx.c b/src/c/signalProcessing/fft/dfftmx.c new file mode 100644 index 0000000..f7d6ce3 --- /dev/null +++ b/src/c/signalProcessing/fft/dfftmx.c @@ -0,0 +1,1211 @@ +/* + * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab + * Copyright (C) 2008-2008 - INRIA - Allan SIMON + * + * This file must be used under the terms of the CeCILL. + * This source file is licensed as described in the file COPYING, which + * you should have received as part of this distribution. The terms + * are also available at + * http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt + * + */ + +#include <stdlib.h> +#include <math.h> +#include "max.h" +#include "min.h" +#include "fft_internal.h" + + +/*c'est moche je sais */ + +static double* a ; +static double* b ; +static int ntot ; +static int n ; +static int nspan ; +static int isn ; +static int m ; +static int kt ; +static double* wt ; +static double* ck ; +static double* bt ; +static double* sk ; +static int* np ; +static int* nfac ; +static int inc ; +static int nt ; +static int ks ; + +static double rad ; +static double c72 ; +static double s72 ; +static double s120 ; + +static double aa ; +static double ak ; +static double akm ; +static double akp ; +static double aj ; +static double ajp ; +static double ajm ; + +static double bb ; +static double bk ; +static double bkm ; +static double bkp ; +static double bj ; +static double bjp ; +static double bjm ; +static double dr ; + +static double cd ; +static double c1 ; +static double c2 ; +static double c3 ; + +static double sd ; +static double s1 ; +static double s2 ; +static double s3 ; + +static int kspan ; +static int nn ; +static int jc ; +static int klim ; +static int jf ; +static int maxf ; +static int kk ; +static int k ; +static int k1 ; +static int k2 ; +static int k3 ; +static int k4 ; +static int mm ; +static int kspnn ; +static int i ; +static int j ; +static int jj; + +/* Prototypes */ + +static void preliminaryWork (void); +static void permute_stage1 (void); +static void permute_stage2 (void); +static void f4t_150 (void); +static void factorOf3Transform (void) ; +static void factorOf5Transform (void) ; +static void preFOtherTransform (void); +static void factorOfOtherTransform (void); +static void pre_sqFactor2NormlOrder (void); +static void nonSqFactor2NormOrder (void) ; +static void detPermutCycles (void); +static void reorderMatrix (void ) ; + +static int f4t_170 (void); +static int factorTransform (void); +static int pre_fOf2Trans (void); +static int factorOf2Transform (void); +static int factorOf4Transform (void); +static int mulByRotationFactor (void ); +static int post_sqFactor2NormlOrder (void); +static void single_sqFactor2NormlOrder (void); +static int multi_sqFactor2NormlOrder (void); + +/* End Prototypes */ + +/*note on this code all numbers alone in comment is + a reference to the corresponding goto in the original fotran code */ + +int dfftmx ( double* _pdblA , double* _pdblB , int _iNtot, int _iN, int _iNspan, + int _iIsn, int _iM, int _iKt, double* _pdblWt, double* _pdblCk, + double* _pdblBt, double* _pdblSk, int* _piNp, int* _piNfac) +{ + int retVal = 0 ; + a = _pdblA ; + b = _pdblB ; + + ntot = _iNtot ; + n = _iN ; + nspan= _iNspan ; + isn = _iIsn; + m = _iM ; + kt = _iKt ; + wt = _pdblWt ; + ck = _pdblCk; + bt = _pdblBt; + sk = _pdblSk; + np = _piNp; + nfac = _piNfac; + + inc = abs ( isn ) ; + nt = inc*ntot ; + ks = inc*nspan; + rad = atan((double)1); + c72 = cos (rad/0.6250); + s72 = sin (rad/0.6250); + s120= sqrt(0.750); + + + + preliminaryWork() ; + + + while ( retVal == 0 ) retVal = factorTransform ( ) ; + + np[0] = ks ; + + if ( kt != 0) permute_stage1 ( ) ; + + + if ( 2*kt + 1 < m ) permute_stage2 ( ) ; + + _pdblA = a ; + _pdblB = b ; + + return 0 ; +} + +/** ************************************** +Sous-Fonctions +******************************************/ + + + +/* this function only set the value of variable */ +static void preliminaryWork (void) +{ + s72 = -s72 ; + s120= -s120; + rad = -rad ; + + kspan = ks ; + nn = nt -inc ; + jc = ks/n ; + + /* sin , cos values are re-initialized each lim steps */ + + klim = 32*jc ; + i = 0; + jf = 0 ; + + if ( kt > 0 ) maxf = max ( nfac[kt-1] , nfac[m-kt-1] ); + else maxf = nfac[m-kt-1] ; + +} + + + +/*40*/ +/* this function is call as many time as dfftbi has determined factor for the size of the input vector + each time we call a transform function for each kind of factor , we begin by the smallest + factor are stored in nfac + */ + +static int factorTransform (void) +{ + + int retVal = 42; + + dr = 8 * (double)jc/(double)kspan ; + cd = 2 * sin(0.5*dr*rad)*sin(0.5*dr*rad); + sd = sin(dr*rad) ; + kk = 1 ; + i++ ; + + + + +switch ( nfac[i-1] ) + { + case 2 : + /*transform for factor of 2 (including rotation factor)*/ + + retVal = pre_fOf2Trans() ; + if ( retVal == 0 ) factorOf2Transform () ; + + break ; + + case 4 : + + kspnn = kspan ; + kspan = kspan >> 2 ; /*kspan /= 4 */ + + retVal = factorOf4Transform () ; + break ; + + case 3 : + + k = nfac[i-1] ; + kspnn = kspan ; + kspan = kspan / k ; + + factorOf3Transform ( ) ; + break ; + + case 5 : + + k = nfac[i-1] ; + kspnn = kspan ; + kspan = kspan / k ; + + factorOf5Transform ( ) ; + break ; + + default : + + k = nfac[i-1] ; + kspnn = kspan ; + kspan = kspan / k ; + + if ( nfac[i-1] != jf) preFOtherTransform ( ) ; + + factorOfOtherTransform ( ) ; + break ; + } + + + + if ( retVal == 42 ) + { + if ( i != m) retVal = mulByRotationFactor ( ) ; + else retVal = 1 ; + } + + if ( retVal == 1 ) return 1 ; /*goto permute */ + else return 0 ; /*goto factor_transform => once again*/ + +} + +/* permutation for square factor of n */ +static void permute_stage1 (void) +{ + + int retVal = 1 ; + + pre_sqFactor2NormlOrder () ; + + if ( n == ntot ) + /*permutation for single-variate transform (optional code)*/ + while ( retVal == 1) + { + single_sqFactor2NormlOrder () ; + retVal = post_sqFactor2NormlOrder () ; + } + else + /*permutation for multivariate transform*/ + while ( retVal == 1) retVal = multi_sqFactor2NormlOrder (); + +} + +static void permute_stage2 (void) +{ + kspnn = np[kt] ; + + /*permutation for square-free facotrs of n */ + nonSqFactor2NormOrder () ; + + /*determine the permutation cycles of length greater than 1*/ + detPermutCycles (); + + j = k3 + 1; + nt -= kspnn ; + i = nt - inc + 1 ; + while ( nt >= 0 ) + { + reorderMatrix ( ) ; + + j = k3 + 1 ; + nt -= kspnn ; + i = nt - inc + 1 ; + } +} + +/***************************************** +Sous-Sous-Fonctions +******************************************/ + + + + + +static int pre_fOf2Trans (void) +{ + kspan /= 2; + k1 = kspan + 2 ; + /*50*/ + do{ + do{ + k2 = kk + kspan ; + ak = a[k2-1] ; + bk = b[k2-1] ; + + a[k2-1] = a[kk-1] - ak; + b[k2-1] = b[kk-1] - bk; + + a[kk-1] = a[kk-1] + ak; + b[kk-1] = b[kk-1] + bk; + + kk = k2 + kspan ; + }while (kk <= nn); + + kk -= nn ; + }while (kk <= jc); + + + if ( kk > kspan ) return 1 ; /*goto350*/ + else return 0 ; /*goto60*/ + + +} + + + +static int factorOf2Transform (void) +{ + do /*60*/ {/*while ( kk <= jc*2 )*/ + c1 = 1 - cd ; + s1 = sd ; + mm = min( k1/2 , klim); + + do/* do 80 */ {/*while ( kk <= mm || ( kk > mm && kk < k2 ))*/ + do {/*while(kk > k2) */ + do { /*while ( kk < nt )*/ + k2 = kk + kspan; + + ak = a[kk-1] - a[k2-1]; + bk = b[kk-1] - b[k2-1]; + + a[kk-1] = a[kk-1] + a[k2-1]; + b[kk-1] = b[kk-1] + b[k2-1]; + + a[k2-1] = c1*ak - s1*bk; + b[k2-1] = s1*ak + c1*bk; + + kk = k2 + kspan; + }while ( kk < nt ); + + k2 = kk - nt; + c1 = -c1; + kk = k1 - k2; + + + }while (kk > k2); + + kk += jc; + + if ( kk <= mm ) /* 70 */ + { + ak = c1 - ( cd*c1+sd*s1) ; + s1 += (sd*c1-cd*s1) ; + /*c the following three statements compensate for truncation + c error. if rounded arithmetic is used, substitute + c c1=ak*/ + c1 = 0.5/(ak*ak+s1*s1) + 0.5 ; + s1 *= c1 ; + c1 *= ak ; + } + else { + if ( kk < k2 ) /*90*/ { + s1 = dr*rad*((double)(kk-1)/(double)jc); + c1 = cos(s1) ; + s1 = sin(s1) ; + mm = min(k1/2,mm+klim); + } + } + + } while ( kk <= mm || ( kk > mm && kk < k2 )); + + k1 += (inc+inc) ; + kk = (k1-kspan)/2 + jc; + + } while ( kk <= jc*2 ); + + + return 0 ; /*goto40*/ +} + + +/* this one is just an optimisation of the factor of 2 transform , we compute more things each turn */ + +static int factorOf4Transform (void) +{ + int return_value = 0 ; + + /*120*/ + do + { + c1 = 1 ; + s1 = 0 ; + + mm = min ( kspan , klim ) ; + + do + { + f4t_150 () ; + return_value = f4t_170 () ; + } while ( return_value == 0 ); + + kk += ( inc - kspan ) ; + } while ( kk <= jc ) ; + + + + if ( kspan == jc ) + return 1 ; /*goto350*/ + else + return 0 ;/*goto40*/ + + +} + +/*this function and the following are just here for conveniance , they just do fourier transformation for factor of 4 + but as the code was a bit long in factorof4transform , we've created two sub-functions */ + +static void f4t_150 (void) +{ + + do{ + k1 = kk + kspan ; + k2 = k1 + kspan ; + k3 = k2 + kspan ; + + akp = a[kk-1] + a[k2-1] ; + akm = a[kk-1] - a[k2-1] ; + + ajp = a[k1-1] + a[k3-1] ; + ajm = a[k1-1] - a[k3-1] ; + + a[kk-1] = akp + ajp ; + ajp = akp - ajp ; + + bkp = b[kk-1] + b[k2-1] ; + bkm = b[kk-1] - b[k2-1] ; + + bjp = b[k1-1] + b[k3-1] ; + bjm = b[k1-1] - b[k3-1] ; + + b[kk-1] = bkp + bjp ; + bjp = bkp - bjp ; + + akp = akm + bjm ; + akm = akm - bjm ; + + bkp = bkm - ajm ; + bkm = bkm + ajm ; + + if ( s1 == 0 )/*190*/ + { + a[k1-1] = akp ; + a[k2-1] = ajp ; + a[k3-1] = akm ; + + b[k1-1] = bkp ; + b[k2-1] = bjp ; + b[k3-1] = bkm ; + + + } + else /*160*/ + { + + a[k1-1] = akp*c1 - bkp*s1 ; + a[k2-1] = ajp*c2 - bjp*s2 ; + a[k3-1] = akm*c3 - bkm*s3 ; + + a[k1-1] = bkp*c1 + akp*s1 ; + a[k2-1] = bjp*c2 + ajp*s2 ; + a[k3-1] = bkm*c3 + akm*s3 ; + } + kk=k3+kspan; + }while ( kk <= nt ) ; + + +} + +static int f4t_170 (void) +{ + kk += ( jc - nt ) ; + + if ( kk <= mm ) + { + c2 = c1 - (cd*c1 + sd*s1); + s1 = s1 + (sd*c1 - cd*s1); + + /* + the following three statements compensate for truncation + error. if rounded arithmetic is used, substitute + c1=c2 + */ + + c1 = 0.5/(c2*c2+s1*s1) + 0.5 ; + s1 *= c1 ; + c1 *= c2 ; + + /*140*/ + + c2 = c1*c1 - s1*s1 ; + s2 = c1*s1*2 ; + c3 = c2*c1 - s2*s1 ; + s3 = c2*s1 + s2*c1 ; + + + return 0 ; + + } + else + { + if ( kk <= kspan ) + { + s1 = dr*rad * (kk-1)/jc ; + c1 = cos (s1) ; + s1 = sin (s1) ; + mm = min ( kspan , mm + klim ); + + /*140*/ + + c2 = c1*c1 - s1*s1 ; + s2 = c1*s1*2 ; + c3 = c2*c1 - s2*s1 ; + s3 = c2*s1 + s2*c1 ; + + return 0 ; + } + } + + return 1 ; +} + + + + +static void factorOf3Transform (void) +{ + do{ + do{ + k1 = kk + kspan ; + k2 = k1 + kspan ; + + ak = a[kk-1] ; + bk = b[kk-1] ; + + aj = a[k1-1] + a[k2-1] ; + bj = b[k1-1] + b[k2-1] ; + + a[kk-1] = ak + aj ; + b[kk-1] = bk + bj ; + + ak = -0.5*aj + ak ; + bk = -0.5*bj + bk ; + + aj = (a[k1-1] - a[k2-1])*s120 ; + bj = (b[k1-1] - b[k2-1])*s120 ; + + a[k1-1] = ak - bj ; + b[k1-1] = bk + aj ; + a[k2-1] = ak + bj ; + b[k2-1] = bk - aj ; + + kk = k2 + kspan ; + } while (kk < nn); + + kk -= nn ; + }while (kk <= kspan); + +} + +static void factorOf5Transform (void) +{ + c2 = c72*c72 - s72 *s72 ; + s2 = 2 * c72*s72; + + do{ + do{ + k1 = kk + kspan ; + k2 = k1 + kspan ; + k3 = k2 + kspan ; + k4 = k3 + kspan ; + + + + akp = a[k1-1] + a[k4-1] ; + akm = a[k1-1] - a[k4-1] ; + + bkp = b[k1-1] + b[k4-1] ; + bkm = b[k1-1] - b[k4-1] ; + + ajp = a[k2-1] + a[k3-1] ; + ajm = a[k2-1] - a[k3-1] ; + + bjp = b[k2-1] + b[k3-1] ; + bjm = b[k2-1] - b[k3-1] ; + + aa = a[kk-1] ; + bb = b[kk-1] ; + + a[kk-1] = aa + akp + ajp; + b[kk-1] = bb + bkp + bjp; + + ak = akp*c72 + ajp*c2 + aa ; + bk = bkp*c72 + bjp*c2 + bb ; + + aj = akm*s72 + ajm*s2 ; + bj = bkm*s72 + bjm*s2 ; + + a[k1-1] = ak - bj ; + a[k4-1] = ak + bj ; + b[k1-1] = bk + aj ; + b[k4-1] = bk - aj ; + + ak = akp*c2 + ajp*c72 + aa ; + bk = bkp*c2 + bjp*c72 + bb ; + + aj = akm*s2 - ajm*s72 ; + + bj = bkm*s2 - bjm*s72 ; + + a[k2-1] = ak - bj ; + a[k3-1] = ak + bj ; + b[k2-1] = bk + aj ; + b[k3-1] = bk - aj ; + + kk = k4 + kspan; + }while (kk < nn); + + kk -= nn ; + }while (kk <= kspan); +} + +/* this function is the general case of non factor of 2 factor , the factorof3transform and factorof5trandform are just +special case of this one */ + + +static void preFOtherTransform (void) +{ + + jf = k ; + s1 = (rad*8)/k ; + c1 = cos (s1) ; + s1 = sin (s1) ; + ck[jf-1] = 1 ; + sk[jf-1] = 0 ; + j = 1 ; + + do + { + ck[j-1] = ck[k-1] * c1 + sk[k-1]*s1 ; + sk[j-1] = ck[k-1] * s1 - sk[k-1]*c1 ; + + k -- ; + + ck[k-1] = ck[j-1] ; + sk[k-1] = - sk[j-1] ; + + j++ ; + + }while ( j < k ); + +} + +static void factorOfOtherTransform (void) +{ +int ktemp = 0 ; + +do + { + k1 = kk ; + k2 = kk + kspnn ; + + aa = a[kk-1] ; + bb = b[kk-1] ; + + ak = aa ; + bk = bb ; + j = 1 ; + k1 += kspan ; + + do + { + k2 -= kspan ; + j++ ; + + wt[j-1] = a[k1-1] + a[k2-1] ; + ak = wt[j-1] + ak ; + + bt[j-1] = b[k1-1] + b[k2-1] ; + bk = bt[j-1] + bk ; + j++ ; + + wt[j-1] = a[k1-1] - a[k2-1] ; + bt[j-1] = b[k1-1] - b[k2-1] ; + + k1 += kspan; + }while ( k1 < k2 ) ; + + a[kk-1] = ak ; + b[kk-1] = bk ; + + k1 = kk ; + k2 = kk + kspnn ; + j = 1 ; + + do + { + k1 += kspan ; + k2 -= kspan ; + jj = j ; + ak = aa ; + bk = bb ; + aj = 0 ; + bj = 0 ; + k = 1 ; + + do + { + k++ ; + ak += ( wt[k-1] * ck[jj-1] ) ; + bk += ( bt[k-1] * ck[jj-1] ) ; + + k++ ; + aj += (wt[k-1] * sk[jj-1]) ; + bj += (bt[k-1] * sk[jj-1]) ; + jj += j ; + + if ( jj > jf ) + jj -= jf ; + } while ( k < jf ) ; + + k = jf - j ; + a[k1-1] = ak - bj ; + b[k1-1] = bk + aj ; + a[k2-1] = ak + bj ; + b[k2-1] = bk - aj ; + + j++ ; + + }while ( j < k ) ; + + + + + + kk += kspnn ; + ktemp = kk ; + + if ( kk > nn ) + { + kk -= nn; + } + +}while ( ktemp <= nn || (kk <= kspan && ( ktemp > nn)) ); +} + + + + +static int mulByRotationFactor (void ) +{ + int ktemp = 0 ; + + if ( i != m ) + { + kk = jc + 1 ; + + /*300*/ + do + { + c2 = 1 - cd ; + s1 = sd ; + + mm = min ( kspan , klim ) ; + + /*320 */ + do + { + + c1 = c2 ; + s2 = s1 ; + kk += kspan ; + + do + { + + ak = a[kk-1] ; + a[kk-1] = c2*ak - s2*b[kk-1] ; + b[kk-1] = s2*ak + c2*b[kk-1] ; + + kk += kspnn ; + ktemp = kk ; + + + if ( kk > nt ) + { + ak = s1*s2 ; + s2 = s1*c2 + s2*c1 ; + c2 = c1*c2 - ak ; + kk += (kspan - nt ) ; + + + + } + + }while (ktemp <= nt || ( kk <= kspnn && ktemp > nt )) ; + + kk += ( jc - kspnn ); + + + if ( kk <= mm ) + { + + /* 310*/ + c2 = c1 - ( cd*c1 + sd*s1 ) ; + s1 += (sd*c1 - cd*s1 ) ; + + /* + the following three statements compensate for truncation + error. if rounded arithmetic is used, substitute + c1=c2 + */ + + c1 = 0.5/(c2*c2+s1*s1) + 0.5 ; + s1 *= c1 ; + c2 *= c1 ; + } + else + { + if ( kk <= kspan ) + { + + s1 = dr*rad * (kk-1)/jc ; + c2 = cos (s1) ; + s1 = sin (s1) ; + mm = min ( kspan , mm + klim ); + } + } + + }while ( kk <= mm ||( kk <= kspan && kk > mm ) ) ; + + kk += (jc + inc -kspan ); + + + }while ( kk <= jc+jc); + + + return 0 ; /* goto40 */ + } + + return 1 ; /* goto350*/ +} + + + + +static void pre_sqFactor2NormlOrder (void) +{ + + k = kt + kt + 1 ; + + if ( m < k ) + k -- ; + + j = 1 ; + np[k] = jc ; + + do + { + np[j] = np[j-1]/nfac[j-1] ; + np[k-1] = np[k]*nfac[j-1] ; + + j++ ; + k-- ; + }while ( j < k ) ; + + k3 = np[k] ; + kspan = np[1] ; + kk = jc + 1 ; + k2 = kspan + 1 ; + j = 1; + + +} + +static int post_sqFactor2NormlOrder (void) +{ + + do + { + do + { + k2 -= np[j-1] ; + j++ ; + k2 += np[j] ; + + } while ( k2 > np[j-1]); + + j = 1 ; + +/* 390 */ + do + { + if ( kk < k2 ) + { + + + return 1 ; + } + else + { + kk += inc ; + k2 += kspan ; + } + }while( k2 < ks ); + + }while ( kk < ks ) ; + + jc = k3 ; + + return 0; +} + + +/* appeler cetter fonction dans un do while valeur_retour != 1)*/ +static void single_sqFactor2NormlOrder (void) +{ + + + do + { + + ak = a[kk-1] ; + a[kk-1] = a[k2-1] ; + a[k2-1] = ak ; + + bk = b[kk-1] ; + b[kk-1] = b[k2-1] ; + b[k2-1] = bk ; + + kk += inc ; + k2 += kspan ; + } while ( k2 < ks ); + + /*380*/ +} + +/*idem que single_ */ +static int multi_sqFactor2NormlOrder (void) +{ + + + + k = kk + jc ; + + do /*410*/ + { + ak = a[kk-1] ; + a[kk-1] = a[k2-1] ; + a[k2-1] = ak ; + bk = b[kk-1] ; + b[kk-1] = b[k2-1] ; + b[k2-1] = bk ; + kk += inc ; + k2 += kspan ; + } while ( kk < k ); + + kk += (ks - jc ) ; + k2 += (ks - jc ) ; + + if ( kk < nt ) + return 1 ; + + k2 += ( kspan - nt ); + kk += ( jc - nt ); + + if ( k2 < ks ) + { + + return 1 ; + } + if( post_sqFactor2NormlOrder ( ) == 1 ) + { + + return 1 ; + } + jc = k3 ; + + return 0; + +} + + + +static void nonSqFactor2NormOrder (void) +{ + + j = m - kt ; + nfac[j] = 1 ; + + + + do + { + nfac[j-1] *= nfac[j] ; + + j-- ; + + + }while ( j != kt ) ; + + kt ++ ; + nn = nfac[kt-1] - 1; + + jj = 0 ; + j = 0; + + /*480*/ + + k2 = nfac[kt-1] ; + k = kt + 1 ; + kk = nfac[k-1] ; + j ++ ; + + while ( j <= nn ) + { + jj += kk ; + + + while ( jj >= k2 ) + { + jj -= k2 ; + k2 = kk ; + k++ ; + kk = nfac[k-1] ; + + jj += kk ; + + + } + + np[j-1] = jj ; + k2 = nfac[kt-1] ; + k = kt + 1 ; + kk = nfac[k-1] ; + j ++ ; + + } + + j = 0 ; + + return ; +} + +/* here we determine how many permutation cycles we need to do */ +static void detPermutCycles (void) +{ + + do + { + do + { + j++ ; + + kk = np[j-1] ; + }while ( kk < 0 ) ; + + + if ( kk != j ) + { + do + { + + k = kk ; + kk = np[k-1] ; + np[k-1] = -kk ; + }while ( kk != j ) ; + k3 = kk ; + } + else + np[j-1] = -j ; + }while ( j != nn ); + + maxf *= inc ; + + return ; +} + +static void reorderMatrix (void) +{ +do + { + do + { + j-- ; + + }while (np[j-1] < 0 ) ; + + jj = jc ; + + /*520*/ + do + { + kspan = jj ; + + if ( jj > maxf ) + kspan = maxf ; + + jj -= kspan ; + k = np [j-1]; + kk = jc*k + i + jj ; + k1 = kk + kspan ; + k2 = 0 ; + + do /*530*/ + { + k2 ++ ; + wt[k2-1] = a[k1-1] ; + bt[k2-1] = b[k1-1] ; + k1 -= inc ; + + }while ( k1 != kk ); + + do + { + k1 = kk + kspan ; + k2 = k1 - jc * (k + np[k-1]); + k = -np[k-1]; + + + do + { + a[k1-1] = a[k2-1] ; + b[k1-1] = b[k2-1] ; + + k1 -= inc ; + k2 -= inc ; + + }while ( k1 != kk ) ; + + kk = k2 ; + + }while ( k != j ); + + k1 = kk +kspan ; + k2 = 0 ; + /*560*/ + + do + { + k2 ++ ; + a[k1-1] = wt[k2-1] ; + b[k1-1] = bt[k2-1] ; + k1 -= inc ; + + + }while ( k1 != kk ) ; + + } while ( jj != 0 ) ; +}while ( j != 1 ) ; + + return ; +} + + |