summaryrefslogtreecommitdiff
path: root/src/c/elementaryFunctions/discrete_mathematics
diff options
context:
space:
mode:
authorsiddhu89902017-06-21 15:46:02 +0530
committersiddhu89902017-06-21 15:46:02 +0530
commit7dd99346700740df9480b1f47221e24afc32371d (patch)
tree41b5094514f9a62d40483a1b6c0481c115220c04 /src/c/elementaryFunctions/discrete_mathematics
parentadbc46709966e50b3fed6ff061afff9e59d4b79c (diff)
parent061f07929cc984788154bc296c6cc440ef72a3c6 (diff)
downloadScilab2C_fossee_old-7dd99346700740df9480b1f47221e24afc32371d.tar.gz
Scilab2C_fossee_old-7dd99346700740df9480b1f47221e24afc32371d.tar.bz2
Scilab2C_fossee_old-7dd99346700740df9480b1f47221e24afc32371d.zip
Merged Ankit's work, signal processing and string functions
Diffstat (limited to 'src/c/elementaryFunctions/discrete_mathematics')
-rw-r--r--src/c/elementaryFunctions/discrete_mathematics/gcd/u8gcda.c60
-rw-r--r--src/c/elementaryFunctions/discrete_mathematics/lcm/u8lcma.c68
2 files changed, 128 insertions, 0 deletions
diff --git a/src/c/elementaryFunctions/discrete_mathematics/gcd/u8gcda.c b/src/c/elementaryFunctions/discrete_mathematics/gcd/u8gcda.c
new file mode 100644
index 0000000..3d58623
--- /dev/null
+++ b/src/c/elementaryFunctions/discrete_mathematics/gcd/u8gcda.c
@@ -0,0 +1,60 @@
+/* Copyright (C) 2017 - IIT Bombay - FOSSEE
+
+ This file must be used under the terms of the CeCILL.
+ This source file is licensed as described in the file COPYING, which
+ you should have received as part of this distribution. The terms
+ are also available at
+ http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
+ Author: Ankit Raj
+ Organization: FOSSEE, IIT Bombay
+ Email: toolbox@scilab.in
+*/
+#include<stdio.h>
+/* This is the "gcd" function , which takes two input. first
+ one is the array and the second one is the length of the array.
+ Now to calculate the gcd of two elements we fin the maximum of
+ the two elements, and then iterate from maximum value down to 1,
+ and check whether the particular value divides the two elements.
+ And in this way we can calculate the gcd of the whole array.
+*/
+#include "gcd.h"
+uint8 u8gcdua(uint8* in,int size)
+{
+
+ int temp;
+ if(size==1)
+ {
+ temp=*in;
+ }
+ else
+ {
+ int x=*in;
+ int y=*(in+1);
+ int max=(x>y)?x:y;
+ for(int i=max;i>=1;i--)
+ {
+ if(x%i==0 && y%i==0)
+ {
+ temp=i;
+ break;
+ }
+ }
+ for(int j=2;j<size;j++)
+ {
+ x=temp;
+ y=*(in+j);
+ max=(x>y)?x:y;
+ for(int i=max;i>=1;i--)
+ {
+ if(x%i==0 && y%i==0)
+ {
+ temp=i;
+ break;
+ }
+ }
+ }
+}
+
+ return temp;
+}
+
diff --git a/src/c/elementaryFunctions/discrete_mathematics/lcm/u8lcma.c b/src/c/elementaryFunctions/discrete_mathematics/lcm/u8lcma.c
new file mode 100644
index 0000000..56856e4
--- /dev/null
+++ b/src/c/elementaryFunctions/discrete_mathematics/lcm/u8lcma.c
@@ -0,0 +1,68 @@
+/* Copyright (C) 2017 - IIT Bombay - FOSSEE
+
+ This file must be used under the terms of the CeCILL.
+ This source file is licensed as described in the file COPYING, which
+ you should have received as part of this distribution. The terms
+ are also available at
+ http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
+ Author: Ankit Raj
+ Organization: FOSSEE, IIT Bombay
+ Email: toolbox@scilab.in
+*/
+#include<stdio.h>
+/* This is the "lcm" function, accepting two inputs which are the array of integers
+ and second the size of the array. The algorithm works like this:
+ We take a temproary variable and store the lcm of the first two elements of the
+ array in it. Now using this temproary variable we recursively fin the lcm of
+ the whole array.
+ Now to fin the lcm of two elements we fin the maximum of the two elements and
+ check whether it is divisible by both the elements, if the condition is true we
+ get the lcm, else increase the maximum value by itself unless we get the lcm.
+*/
+#include "lcm.h"
+uint8 u8lcma(uint8* in,int size)
+{
+ long long int lcm_temp;
+ if(size==1)
+ {
+ lcm_temp=*in;
+ }
+ else
+ {
+
+ int x1=*in;
+ int x2=*(in+1);
+ long long int max=(x1>x2)?x1:x2;
+ long long int i=max;
+ while(1)
+ {
+ if(i%x1==0 && i%x2==0)
+ {
+ lcm_temp=i;
+ break;
+ }
+ else
+ i+=max;
+ }
+ for(int j=2;j<size;j++)
+ {
+ x1=lcm_temp;
+ x2=*(in+j);
+ max=(x1>x2)?x1:x2;
+ i=max;
+ while(1)
+ {
+ if(i%x1==0 && i%x2==0)
+ {
+ lcm_temp=i;
+ break;
+ }
+ else
+ i+=max;
+ }
+ }
+
+ }
+ return lcm_temp;
+}
+