summaryrefslogtreecommitdiff
path: root/2.3-1/thirdparty/raspberrypi/includes/opencv2/features2d/features2d.hpp
blob: e4e796fbaca37f07a5d4a885370ec0ef1ed6ca20 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_FEATURES_2D_HPP__
#define __OPENCV_FEATURES_2D_HPP__

#include "opencv2/core/core.hpp"
#include "opencv2/flann/miniflann.hpp"

#ifdef __cplusplus
#include <limits>

namespace cv
{

CV_EXPORTS bool initModule_features2d();

/*!
 The Keypoint Class

 The class instance stores a keypoint, i.e. a point feature found by one of many available keypoint detectors, such as
 Harris corner detector, cv::FAST, cv::StarDetector, cv::SURF, cv::SIFT, cv::LDetector etc.

 The keypoint is characterized by the 2D position, scale
 (proportional to the diameter of the neighborhood that needs to be taken into account),
 orientation and some other parameters. The keypoint neighborhood is then analyzed by another algorithm that builds a descriptor
 (usually represented as a feature vector). The keypoints representing the same object in different images can then be matched using
 cv::KDTree or another method.
*/
class CV_EXPORTS_W_SIMPLE KeyPoint
{
public:
    //! the default constructor
    CV_WRAP KeyPoint() : pt(0,0), size(0), angle(-1), response(0), octave(0), class_id(-1) {}
    //! the full constructor
    KeyPoint(Point2f _pt, float _size, float _angle=-1,
            float _response=0, int _octave=0, int _class_id=-1)
            : pt(_pt), size(_size), angle(_angle),
            response(_response), octave(_octave), class_id(_class_id) {}
    //! another form of the full constructor
    CV_WRAP KeyPoint(float x, float y, float _size, float _angle=-1,
            float _response=0, int _octave=0, int _class_id=-1)
            : pt(x, y), size(_size), angle(_angle),
            response(_response), octave(_octave), class_id(_class_id) {}

    size_t hash() const;

    //! converts vector of keypoints to vector of points
    static void convert(const vector<KeyPoint>& keypoints,
                        CV_OUT vector<Point2f>& points2f,
                        const vector<int>& keypointIndexes=vector<int>());
    //! converts vector of points to the vector of keypoints, where each keypoint is assigned the same size and the same orientation
    static void convert(const vector<Point2f>& points2f,
                        CV_OUT vector<KeyPoint>& keypoints,
                        float size=1, float response=1, int octave=0, int class_id=-1);

    //! computes overlap for pair of keypoints;
    //! overlap is a ratio between area of keypoint regions intersection and
    //! area of keypoint regions union (now keypoint region is circle)
    static float overlap(const KeyPoint& kp1, const KeyPoint& kp2);

    CV_PROP_RW Point2f pt; //!< coordinates of the keypoints
    CV_PROP_RW float size; //!< diameter of the meaningful keypoint neighborhood
    CV_PROP_RW float angle; //!< computed orientation of the keypoint (-1 if not applicable);
                            //!< it's in [0,360) degrees and measured relative to
                            //!< image coordinate system, ie in clockwise.
    CV_PROP_RW float response; //!< the response by which the most strong keypoints have been selected. Can be used for the further sorting or subsampling
    CV_PROP_RW int octave; //!< octave (pyramid layer) from which the keypoint has been extracted
    CV_PROP_RW int class_id; //!< object class (if the keypoints need to be clustered by an object they belong to)
};

//! writes vector of keypoints to the file storage
CV_EXPORTS void write(FileStorage& fs, const string& name, const vector<KeyPoint>& keypoints);
//! reads vector of keypoints from the specified file storage node
CV_EXPORTS void read(const FileNode& node, CV_OUT vector<KeyPoint>& keypoints);

/*
 * A class filters a vector of keypoints.
 * Because now it is difficult to provide a convenient interface for all usage scenarios of the keypoints filter class,
 * it has only several needed by now static methods.
 */
class CV_EXPORTS KeyPointsFilter
{
public:
    KeyPointsFilter(){}

    /*
     * Remove keypoints within borderPixels of an image edge.
     */
    static void runByImageBorder( vector<KeyPoint>& keypoints, Size imageSize, int borderSize );
    /*
     * Remove keypoints of sizes out of range.
     */
    static void runByKeypointSize( vector<KeyPoint>& keypoints, float minSize,
                                   float maxSize=FLT_MAX );
    /*
     * Remove keypoints from some image by mask for pixels of this image.
     */
    static void runByPixelsMask( vector<KeyPoint>& keypoints, const Mat& mask );
    /*
     * Remove duplicated keypoints.
     */
    static void removeDuplicated( vector<KeyPoint>& keypoints );

    /*
     * Retain the specified number of the best keypoints (according to the response)
     */
    static void retainBest( vector<KeyPoint>& keypoints, int npoints );
};


/************************************ Base Classes ************************************/

/*
 * Abstract base class for 2D image feature detectors.
 */
class CV_EXPORTS_W FeatureDetector : public virtual Algorithm
{
public:
    virtual ~FeatureDetector();

    /*
     * Detect keypoints in an image.
     * image        The image.
     * keypoints    The detected keypoints.
     * mask         Mask specifying where to look for keypoints (optional). Must be a char
     *              matrix with non-zero values in the region of interest.
     */
    CV_WRAP void detect( const Mat& image, CV_OUT vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    /*
     * Detect keypoints in an image set.
     * images       Image collection.
     * keypoints    Collection of keypoints detected in an input images. keypoints[i] is a set of keypoints detected in an images[i].
     * masks        Masks for image set. masks[i] is a mask for images[i].
     */
    void detect( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints, const vector<Mat>& masks=vector<Mat>() ) const;

    // Return true if detector object is empty
    CV_WRAP virtual bool empty() const;

    // Create feature detector by detector name.
    CV_WRAP static Ptr<FeatureDetector> create( const string& detectorType );

protected:
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const = 0;

    /*
     * Remove keypoints that are not in the mask.
     * Helper function, useful when wrapping a library call for keypoint detection that
     * does not support a mask argument.
     */
    static void removeInvalidPoints( const Mat& mask, vector<KeyPoint>& keypoints );
};


/*
 * Abstract base class for computing descriptors for image keypoints.
 *
 * In this interface we assume a keypoint descriptor can be represented as a
 * dense, fixed-dimensional vector of some basic type. Most descriptors used
 * in practice follow this pattern, as it makes it very easy to compute
 * distances between descriptors. Therefore we represent a collection of
 * descriptors as a Mat, where each row is one keypoint descriptor.
 */
class CV_EXPORTS_W DescriptorExtractor : public virtual Algorithm
{
public:
    virtual ~DescriptorExtractor();

    /*
     * Compute the descriptors for a set of keypoints in an image.
     * image        The image.
     * keypoints    The input keypoints. Keypoints for which a descriptor cannot be computed are removed.
     * descriptors  Copmputed descriptors. Row i is the descriptor for keypoint i.
     */
    CV_WRAP void compute( const Mat& image, CV_OUT CV_IN_OUT vector<KeyPoint>& keypoints, CV_OUT Mat& descriptors ) const;

    /*
     * Compute the descriptors for a keypoints collection detected in image collection.
     * images       Image collection.
     * keypoints    Input keypoints collection. keypoints[i] is keypoints detected in images[i].
     *              Keypoints for which a descriptor cannot be computed are removed.
     * descriptors  Descriptor collection. descriptors[i] are descriptors computed for set keypoints[i].
     */
    void compute( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints, vector<Mat>& descriptors ) const;

    CV_WRAP virtual int descriptorSize() const = 0;
    CV_WRAP virtual int descriptorType() const = 0;

    CV_WRAP virtual bool empty() const;

    CV_WRAP static Ptr<DescriptorExtractor> create( const string& descriptorExtractorType );

protected:
    virtual void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const = 0;

    /*
     * Remove keypoints within borderPixels of an image edge.
     */
    static void removeBorderKeypoints( vector<KeyPoint>& keypoints,
                                      Size imageSize, int borderSize );
};



/*
 * Abstract base class for simultaneous 2D feature detection descriptor extraction.
 */
class CV_EXPORTS_W Feature2D : public FeatureDetector, public DescriptorExtractor
{
public:
    /*
     * Detect keypoints in an image.
     * image        The image.
     * keypoints    The detected keypoints.
     * mask         Mask specifying where to look for keypoints (optional). Must be a char
     *              matrix with non-zero values in the region of interest.
     * useProvidedKeypoints If true, the method will skip the detection phase and will compute
     *                      descriptors for the provided keypoints
     */
    CV_WRAP_AS(detectAndCompute) virtual void operator()( InputArray image, InputArray mask,
                                     CV_OUT vector<KeyPoint>& keypoints,
                                     OutputArray descriptors,
                                     bool useProvidedKeypoints=false ) const = 0;

    CV_WRAP void compute( const Mat& image, CV_OUT CV_IN_OUT std::vector<KeyPoint>& keypoints, CV_OUT Mat& descriptors ) const;

    // Create feature detector and descriptor extractor by name.
    CV_WRAP static Ptr<Feature2D> create( const string& name );
};

/*!
  BRISK implementation
*/
class CV_EXPORTS_W BRISK : public Feature2D
{
public:
    CV_WRAP explicit BRISK(int thresh=30, int octaves=3, float patternScale=1.0f);

    virtual ~BRISK();

    // returns the descriptor size in bytes
    int descriptorSize() const;
    // returns the descriptor type
    int descriptorType() const;

    // Compute the BRISK features on an image
    void operator()(InputArray image, InputArray mask, vector<KeyPoint>& keypoints) const;

    // Compute the BRISK features and descriptors on an image
    void operator()( InputArray image, InputArray mask, vector<KeyPoint>& keypoints,
                      OutputArray descriptors, bool useProvidedKeypoints=false ) const;

    AlgorithmInfo* info() const;

    // custom setup
    CV_WRAP explicit BRISK(std::vector<float> &radiusList, std::vector<int> &numberList,
        float dMax=5.85f, float dMin=8.2f, std::vector<int> indexChange=std::vector<int>());

    // call this to generate the kernel:
    // circle of radius r (pixels), with n points;
    // short pairings with dMax, long pairings with dMin
    CV_WRAP void generateKernel(std::vector<float> &radiusList,
        std::vector<int> &numberList, float dMax=5.85f, float dMin=8.2f,
        std::vector<int> indexChange=std::vector<int>());

protected:

    void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;
    void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    void computeKeypointsNoOrientation(InputArray image, InputArray mask, vector<KeyPoint>& keypoints) const;
    void computeDescriptorsAndOrOrientation(InputArray image, InputArray mask, vector<KeyPoint>& keypoints,
                                       OutputArray descriptors, bool doDescriptors, bool doOrientation,
                                       bool useProvidedKeypoints) const;

    // Feature parameters
    CV_PROP_RW int threshold;
    CV_PROP_RW int octaves;

    // some helper structures for the Brisk pattern representation
    struct BriskPatternPoint{
        float x;         // x coordinate relative to center
        float y;         // x coordinate relative to center
        float sigma;     // Gaussian smoothing sigma
    };
    struct BriskShortPair{
        unsigned int i;  // index of the first pattern point
        unsigned int j;  // index of other pattern point
    };
    struct BriskLongPair{
        unsigned int i;  // index of the first pattern point
        unsigned int j;  // index of other pattern point
        int weighted_dx; // 1024.0/dx
        int weighted_dy; // 1024.0/dy
    };
    inline int smoothedIntensity(const cv::Mat& image,
                const cv::Mat& integral,const float key_x,
                const float key_y, const unsigned int scale,
                const unsigned int rot, const unsigned int point) const;
    // pattern properties
    BriskPatternPoint* patternPoints_;     //[i][rotation][scale]
    unsigned int points_;                 // total number of collocation points
    float* scaleList_;                     // lists the scaling per scale index [scale]
    unsigned int* sizeList_;             // lists the total pattern size per scale index [scale]
    static const unsigned int scales_;    // scales discretization
    static const float scalerange_;     // span of sizes 40->4 Octaves - else, this needs to be adjusted...
    static const unsigned int n_rot_;    // discretization of the rotation look-up

    // pairs
    int strings_;                        // number of uchars the descriptor consists of
    float dMax_;                         // short pair maximum distance
    float dMin_;                         // long pair maximum distance
    BriskShortPair* shortPairs_;         // d<_dMax
    BriskLongPair* longPairs_;             // d>_dMin
    unsigned int noShortPairs_;         // number of shortParis
    unsigned int noLongPairs_;             // number of longParis

    // general
    static const float basicSize_;
};


/*!
 ORB implementation.
*/
class CV_EXPORTS_W ORB : public Feature2D
{
public:
    // the size of the signature in bytes
    enum { kBytes = 32, HARRIS_SCORE=0, FAST_SCORE=1 };

    CV_WRAP explicit ORB(int nfeatures = 500, float scaleFactor = 1.2f, int nlevels = 8, int edgeThreshold = 31,
        int firstLevel = 0, int WTA_K=2, int scoreType=ORB::HARRIS_SCORE, int patchSize=31 );

    // returns the descriptor size in bytes
    int descriptorSize() const;
    // returns the descriptor type
    int descriptorType() const;

    // Compute the ORB features and descriptors on an image
    void operator()(InputArray image, InputArray mask, vector<KeyPoint>& keypoints) const;

    // Compute the ORB features and descriptors on an image
    void operator()( InputArray image, InputArray mask, vector<KeyPoint>& keypoints,
                     OutputArray descriptors, bool useProvidedKeypoints=false ) const;

    AlgorithmInfo* info() const;

protected:

    void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;
    void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    CV_PROP_RW int nfeatures;
    CV_PROP_RW double scaleFactor;
    CV_PROP_RW int nlevels;
    CV_PROP_RW int edgeThreshold;
    CV_PROP_RW int firstLevel;
    CV_PROP_RW int WTA_K;
    CV_PROP_RW int scoreType;
    CV_PROP_RW int patchSize;
};

typedef ORB OrbFeatureDetector;
typedef ORB OrbDescriptorExtractor;

/*!
  FREAK implementation
*/
class CV_EXPORTS FREAK : public DescriptorExtractor
{
public:
    /** Constructor
         * @param orientationNormalized enable orientation normalization
         * @param scaleNormalized enable scale normalization
         * @param patternScale scaling of the description pattern
         * @param nOctaves number of octaves covered by the detected keypoints
         * @param selectedPairs (optional) user defined selected pairs
    */
    explicit FREAK( bool orientationNormalized = true,
           bool scaleNormalized = true,
           float patternScale = 22.0f,
           int nOctaves = 4,
           const vector<int>& selectedPairs = vector<int>());
    FREAK( const FREAK& rhs );
    FREAK& operator=( const FREAK& );

    virtual ~FREAK();

    /** returns the descriptor length in bytes */
    virtual int descriptorSize() const;

    /** returns the descriptor type */
    virtual int descriptorType() const;

    /** select the 512 "best description pairs"
         * @param images grayscale images set
         * @param keypoints set of detected keypoints
         * @param corrThresh correlation threshold
         * @param verbose print construction information
         * @return list of best pair indexes
    */
    vector<int> selectPairs( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints,
                      const double corrThresh = 0.7, bool verbose = true );

    AlgorithmInfo* info() const;

    enum
    {
        NB_SCALES = 64, NB_PAIRS = 512, NB_ORIENPAIRS = 45
    };

protected:
    virtual void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;
    void buildPattern();
    uchar meanIntensity( const Mat& image, const Mat& integral, const float kp_x, const float kp_y,
                         const unsigned int scale, const unsigned int rot, const unsigned int point ) const;

    bool orientationNormalized; //true if the orientation is normalized, false otherwise
    bool scaleNormalized; //true if the scale is normalized, false otherwise
    double patternScale; //scaling of the pattern
    int nOctaves; //number of octaves
    bool extAll; // true if all pairs need to be extracted for pairs selection

    double patternScale0;
    int nOctaves0;
    vector<int> selectedPairs0;

    struct PatternPoint
    {
        float x; // x coordinate relative to center
        float y; // x coordinate relative to center
        float sigma; // Gaussian smoothing sigma
    };

    struct DescriptionPair
    {
        uchar i; // index of the first point
        uchar j; // index of the second point
    };

    struct OrientationPair
    {
        uchar i; // index of the first point
        uchar j; // index of the second point
        int weight_dx; // dx/(norm_sq))*4096
        int weight_dy; // dy/(norm_sq))*4096
    };

    vector<PatternPoint> patternLookup; // look-up table for the pattern points (position+sigma of all points at all scales and orientation)
    int patternSizes[NB_SCALES]; // size of the pattern at a specific scale (used to check if a point is within image boundaries)
    DescriptionPair descriptionPairs[NB_PAIRS];
    OrientationPair orientationPairs[NB_ORIENPAIRS];
};


/*!
 Maximal Stable Extremal Regions class.

 The class implements MSER algorithm introduced by J. Matas.
 Unlike SIFT, SURF and many other detectors in OpenCV, this is salient region detector,
 not the salient point detector.

 It returns the regions, each of those is encoded as a contour.
*/
class CV_EXPORTS_W MSER : public FeatureDetector
{
public:
    //! the full constructor
    CV_WRAP explicit MSER( int _delta=5, int _min_area=60, int _max_area=14400,
          double _max_variation=0.25, double _min_diversity=.2,
          int _max_evolution=200, double _area_threshold=1.01,
          double _min_margin=0.003, int _edge_blur_size=5 );

    //! the operator that extracts the MSERs from the image or the specific part of it
    CV_WRAP_AS(detect) void operator()( const Mat& image, CV_OUT vector<vector<Point> >& msers,
                                        const Mat& mask=Mat() ) const;
    AlgorithmInfo* info() const;

protected:
    void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    int delta;
    int minArea;
    int maxArea;
    double maxVariation;
    double minDiversity;
    int maxEvolution;
    double areaThreshold;
    double minMargin;
    int edgeBlurSize;
};

typedef MSER MserFeatureDetector;

/*!
 The "Star" Detector.

 The class implements the keypoint detector introduced by K. Konolige.
*/
class CV_EXPORTS_W StarDetector : public FeatureDetector
{
public:
    //! the full constructor
    CV_WRAP StarDetector(int _maxSize=45, int _responseThreshold=30,
                 int _lineThresholdProjected=10,
                 int _lineThresholdBinarized=8,
                 int _suppressNonmaxSize=5);

    //! finds the keypoints in the image
    CV_WRAP_AS(detect) void operator()(const Mat& image,
                CV_OUT vector<KeyPoint>& keypoints) const;

    AlgorithmInfo* info() const;

protected:
    void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    int maxSize;
    int responseThreshold;
    int lineThresholdProjected;
    int lineThresholdBinarized;
    int suppressNonmaxSize;
};

//! detects corners using FAST algorithm by E. Rosten
CV_EXPORTS void FAST( InputArray image, CV_OUT vector<KeyPoint>& keypoints,
                      int threshold, bool nonmaxSuppression=true );

CV_EXPORTS void FASTX( InputArray image, CV_OUT vector<KeyPoint>& keypoints,
                      int threshold, bool nonmaxSuppression, int type );

class CV_EXPORTS_W FastFeatureDetector : public FeatureDetector
{
public:

    enum
    { // Define it in old class to simplify migration to 2.5
      TYPE_5_8 = 0, TYPE_7_12 = 1, TYPE_9_16 = 2
    };

    CV_WRAP FastFeatureDetector( int threshold=10, bool nonmaxSuppression=true );
    AlgorithmInfo* info() const;

protected:
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    int threshold;
    bool nonmaxSuppression;
};


class CV_EXPORTS_W GFTTDetector : public FeatureDetector
{
public:
    CV_WRAP GFTTDetector( int maxCorners=1000, double qualityLevel=0.01, double minDistance=1,
                          int blockSize=3, bool useHarrisDetector=false, double k=0.04 );
    AlgorithmInfo* info() const;

protected:
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    int nfeatures;
    double qualityLevel;
    double minDistance;
    int blockSize;
    bool useHarrisDetector;
    double k;
};

typedef GFTTDetector GoodFeaturesToTrackDetector;
typedef StarDetector StarFeatureDetector;

class CV_EXPORTS_W SimpleBlobDetector : public FeatureDetector
{
public:
  struct CV_EXPORTS_W_SIMPLE Params
  {
      CV_WRAP Params();
      CV_PROP_RW float thresholdStep;
      CV_PROP_RW float minThreshold;
      CV_PROP_RW float maxThreshold;
      CV_PROP_RW size_t minRepeatability;
      CV_PROP_RW float minDistBetweenBlobs;

      CV_PROP_RW bool filterByColor;
      CV_PROP_RW uchar blobColor;

      CV_PROP_RW bool filterByArea;
      CV_PROP_RW float minArea, maxArea;

      CV_PROP_RW bool filterByCircularity;
      CV_PROP_RW float minCircularity, maxCircularity;

      CV_PROP_RW bool filterByInertia;
      CV_PROP_RW float minInertiaRatio, maxInertiaRatio;

      CV_PROP_RW bool filterByConvexity;
      CV_PROP_RW float minConvexity, maxConvexity;

      void read( const FileNode& fn );
      void write( FileStorage& fs ) const;
  };

  CV_WRAP SimpleBlobDetector(const SimpleBlobDetector::Params &parameters = SimpleBlobDetector::Params());

  virtual void read( const FileNode& fn );
  virtual void write( FileStorage& fs ) const;

protected:
  struct CV_EXPORTS Center
  {
      Point2d location;
      double radius;
      double confidence;
  };

  virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
  virtual void findBlobs(const Mat &image, const Mat &binaryImage, vector<Center> &centers) const;

  Params params;
  AlgorithmInfo* info() const;
};


class CV_EXPORTS DenseFeatureDetector : public FeatureDetector
{
public:
    explicit DenseFeatureDetector( float initFeatureScale=1.f, int featureScaleLevels=1,
                                   float featureScaleMul=0.1f,
                                   int initXyStep=6, int initImgBound=0,
                                   bool varyXyStepWithScale=true,
                                   bool varyImgBoundWithScale=false );
    AlgorithmInfo* info() const;

protected:
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    double initFeatureScale;
    int featureScaleLevels;
    double featureScaleMul;

    int initXyStep;
    int initImgBound;

    bool varyXyStepWithScale;
    bool varyImgBoundWithScale;
};

/*
 * Adapts a detector to partition the source image into a grid and detect
 * points in each cell.
 */
class CV_EXPORTS_W GridAdaptedFeatureDetector : public FeatureDetector
{
public:
    /*
     * detector            Detector that will be adapted.
     * maxTotalKeypoints   Maximum count of keypoints detected on the image. Only the strongest keypoints
     *                      will be keeped.
     * gridRows            Grid rows count.
     * gridCols            Grid column count.
     */
    CV_WRAP GridAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector=0,
                                        int maxTotalKeypoints=1000,
                                        int gridRows=4, int gridCols=4 );

    // TODO implement read/write
    virtual bool empty() const;

    AlgorithmInfo* info() const;

protected:
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    Ptr<FeatureDetector> detector;
    int maxTotalKeypoints;
    int gridRows;
    int gridCols;
};

/*
 * Adapts a detector to detect points over multiple levels of a Gaussian
 * pyramid. Useful for detectors that are not inherently scaled.
 */
class CV_EXPORTS_W PyramidAdaptedFeatureDetector : public FeatureDetector
{
public:
    // maxLevel - The 0-based index of the last pyramid layer
    CV_WRAP PyramidAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector, int maxLevel=2 );

    // TODO implement read/write
    virtual bool empty() const;

protected:
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    Ptr<FeatureDetector> detector;
    int maxLevel;
};

/** \brief A feature detector parameter adjuster, this is used by the DynamicAdaptedFeatureDetector
 *  and is a wrapper for FeatureDetector that allow them to be adjusted after a detection
 */
class CV_EXPORTS AdjusterAdapter: public FeatureDetector
{
public:
    /** pure virtual interface
     */
    virtual ~AdjusterAdapter() {}
    /** too few features were detected so, adjust the detector params accordingly
     * \param min the minimum number of desired features
     * \param n_detected the number previously detected
     */
    virtual void tooFew(int min, int n_detected) = 0;
    /** too many features were detected so, adjust the detector params accordingly
     * \param max the maximum number of desired features
     * \param n_detected the number previously detected
     */
    virtual void tooMany(int max, int n_detected) = 0;
    /** are params maxed out or still valid?
     * \return false if the parameters can't be adjusted any more
     */
    virtual bool good() const = 0;

    virtual Ptr<AdjusterAdapter> clone() const = 0;

    static Ptr<AdjusterAdapter> create( const string& detectorType );
};
/** \brief an adaptively adjusting detector that iteratively detects until the desired number
 * of features are detected.
 *  Beware that this is not thread safe - as the adjustment of parameters breaks the const
 *  of the detection routine...
 *  /TODO Make this const correct and thread safe
 *
 *  sample usage:
 //will create a detector that attempts to find 100 - 110 FAST Keypoints, and will at most run
 //FAST feature detection 10 times until that number of keypoints are found
 Ptr<FeatureDetector> detector(new DynamicAdaptedFeatureDetector(new FastAdjuster(20,true),100, 110, 10));

 */
class CV_EXPORTS DynamicAdaptedFeatureDetector: public FeatureDetector
{
public:

    /** \param adjuster an AdjusterAdapter that will do the detection and parameter adjustment
     *  \param max_features the maximum desired number of features
     *  \param max_iters the maximum number of times to try to adjust the feature detector params
     *          for the FastAdjuster this can be high, but with Star or Surf this can get time consuming
     *  \param min_features the minimum desired features
     */
    DynamicAdaptedFeatureDetector( const Ptr<AdjusterAdapter>& adjuster, int min_features=400, int max_features=500, int max_iters=5 );

    virtual bool empty() const;

protected:
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

private:
    DynamicAdaptedFeatureDetector& operator=(const DynamicAdaptedFeatureDetector&);
    DynamicAdaptedFeatureDetector(const DynamicAdaptedFeatureDetector&);

    int escape_iters_;
    int min_features_, max_features_;
    const Ptr<AdjusterAdapter> adjuster_;
};

/**\brief an adjust for the FAST detector. This will basically decrement or increment the
 * threshold by 1
 */
class CV_EXPORTS FastAdjuster: public AdjusterAdapter
{
public:
    /**\param init_thresh the initial threshold to start with, default = 20
     * \param nonmax whether to use non max or not for fast feature detection
     * \param min_thresh
     * \param max_thresh
     */
    FastAdjuster(int init_thresh=20, bool nonmax=true, int min_thresh=1, int max_thresh=200);

    virtual void tooFew(int minv, int n_detected);
    virtual void tooMany(int maxv, int n_detected);
    virtual bool good() const;

    virtual Ptr<AdjusterAdapter> clone() const;

protected:
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    int thresh_;
    bool nonmax_;
    int init_thresh_, min_thresh_, max_thresh_;
};


/** An adjuster for StarFeatureDetector, this one adjusts the responseThreshold for now
 * TODO find a faster way to converge the parameters for Star - use CvStarDetectorParams
 */
class CV_EXPORTS StarAdjuster: public AdjusterAdapter
{
public:
    StarAdjuster(double initial_thresh=30.0, double min_thresh=2., double max_thresh=200.);

    virtual void tooFew(int minv, int n_detected);
    virtual void tooMany(int maxv, int n_detected);
    virtual bool good() const;

    virtual Ptr<AdjusterAdapter> clone() const;

protected:
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    double thresh_, init_thresh_, min_thresh_, max_thresh_;
};

class CV_EXPORTS SurfAdjuster: public AdjusterAdapter
{
public:
    SurfAdjuster( double initial_thresh=400.f, double min_thresh=2, double max_thresh=1000 );

    virtual void tooFew(int minv, int n_detected);
    virtual void tooMany(int maxv, int n_detected);
    virtual bool good() const;

    virtual Ptr<AdjusterAdapter> clone() const;

protected:
    virtual void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;

    double thresh_, init_thresh_, min_thresh_, max_thresh_;
};

CV_EXPORTS Mat windowedMatchingMask( const vector<KeyPoint>& keypoints1, const vector<KeyPoint>& keypoints2,
                                     float maxDeltaX, float maxDeltaY );



/*
 * OpponentColorDescriptorExtractor
 *
 * Adapts a descriptor extractor to compute descriptors in Opponent Color Space
 * (refer to van de Sande et al., CGIV 2008 "Color Descriptors for Object Category Recognition").
 * Input RGB image is transformed in Opponent Color Space. Then unadapted descriptor extractor
 * (set in constructor) computes descriptors on each of the three channel and concatenate
 * them into a single color descriptor.
 */
class CV_EXPORTS OpponentColorDescriptorExtractor : public DescriptorExtractor
{
public:
    OpponentColorDescriptorExtractor( const Ptr<DescriptorExtractor>& descriptorExtractor );

    virtual void read( const FileNode& );
    virtual void write( FileStorage& ) const;

    virtual int descriptorSize() const;
    virtual int descriptorType() const;

    virtual bool empty() const;

protected:
    virtual void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;

    Ptr<DescriptorExtractor> descriptorExtractor;
};

/*
 * BRIEF Descriptor
 */
class CV_EXPORTS BriefDescriptorExtractor : public DescriptorExtractor
{
public:
    static const int PATCH_SIZE = 48;
    static const int KERNEL_SIZE = 9;

    // bytes is a length of descriptor in bytes. It can be equal 16, 32 or 64 bytes.
    BriefDescriptorExtractor( int bytes = 32 );

    virtual void read( const FileNode& );
    virtual void write( FileStorage& ) const;

    virtual int descriptorSize() const;
    virtual int descriptorType() const;

    /// @todo read and write for brief

    AlgorithmInfo* info() const;

protected:
    virtual void computeImpl(const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors) const;

    typedef void(*PixelTestFn)(const Mat&, const vector<KeyPoint>&, Mat&);

    int bytes_;
    PixelTestFn test_fn_;
};


/****************************************************************************************\
*                                      Distance                                          *
\****************************************************************************************/

template<typename T>
struct CV_EXPORTS Accumulator
{
    typedef T Type;
};

template<> struct Accumulator<unsigned char>  { typedef float Type; };
template<> struct Accumulator<unsigned short> { typedef float Type; };
template<> struct Accumulator<char>   { typedef float Type; };
template<> struct Accumulator<short>  { typedef float Type; };

/*
 * Squared Euclidean distance functor
 */
template<class T>
struct CV_EXPORTS SL2
{
    enum { normType = NORM_L2SQR };
    typedef T ValueType;
    typedef typename Accumulator<T>::Type ResultType;

    ResultType operator()( const T* a, const T* b, int size ) const
    {
        return normL2Sqr<ValueType, ResultType>(a, b, size);
    }
};

/*
 * Euclidean distance functor
 */
template<class T>
struct CV_EXPORTS L2
{
    enum { normType = NORM_L2 };
    typedef T ValueType;
    typedef typename Accumulator<T>::Type ResultType;

    ResultType operator()( const T* a, const T* b, int size ) const
    {
        return (ResultType)sqrt((double)normL2Sqr<ValueType, ResultType>(a, b, size));
    }
};

/*
 * Manhattan distance (city block distance) functor
 */
template<class T>
struct CV_EXPORTS L1
{
    enum { normType = NORM_L1 };
    typedef T ValueType;
    typedef typename Accumulator<T>::Type ResultType;

    ResultType operator()( const T* a, const T* b, int size ) const
    {
        return normL1<ValueType, ResultType>(a, b, size);
    }
};

/*
 * Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor
 * bit count of A exclusive XOR'ed with B
 */
struct CV_EXPORTS Hamming
{
    enum { normType = NORM_HAMMING };
    typedef unsigned char ValueType;
    typedef int ResultType;

    /** this will count the bits in a ^ b
     */
    ResultType operator()( const unsigned char* a, const unsigned char* b, int size ) const
    {
        return normHamming(a, b, size);
    }
};

typedef Hamming HammingLUT;

template<int cellsize> struct HammingMultilevel
{
    enum { normType = NORM_HAMMING + (cellsize>1) };
    typedef unsigned char ValueType;
    typedef int ResultType;

    ResultType operator()( const unsigned char* a, const unsigned char* b, int size ) const
    {
        return normHamming(a, b, size, cellsize);
    }
};

/****************************************************************************************\
*                                      DMatch                                            *
\****************************************************************************************/
/*
 * Struct for matching: query descriptor index, train descriptor index, train image index and distance between descriptors.
 */
struct CV_EXPORTS_W_SIMPLE DMatch
{
    CV_WRAP DMatch() : queryIdx(-1), trainIdx(-1), imgIdx(-1), distance(FLT_MAX) {}
    CV_WRAP DMatch( int _queryIdx, int _trainIdx, float _distance ) :
            queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(-1), distance(_distance) {}
    CV_WRAP DMatch( int _queryIdx, int _trainIdx, int _imgIdx, float _distance ) :
            queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(_imgIdx), distance(_distance) {}

    CV_PROP_RW int queryIdx; // query descriptor index
    CV_PROP_RW int trainIdx; // train descriptor index
    CV_PROP_RW int imgIdx;   // train image index

    CV_PROP_RW float distance;

    // less is better
    bool operator<( const DMatch &m ) const
    {
        return distance < m.distance;
    }
};

/****************************************************************************************\
*                                  DescriptorMatcher                                     *
\****************************************************************************************/
/*
 * Abstract base class for matching two sets of descriptors.
 */
class CV_EXPORTS_W DescriptorMatcher : public Algorithm
{
public:
    virtual ~DescriptorMatcher();

    /*
     * Add descriptors to train descriptor collection.
     * descriptors      Descriptors to add. Each descriptors[i] is a descriptors set from one image.
     */
    CV_WRAP virtual void add( const vector<Mat>& descriptors );
    /*
     * Get train descriptors collection.
     */
    CV_WRAP const vector<Mat>& getTrainDescriptors() const;
    /*
     * Clear train descriptors collection.
     */
    CV_WRAP virtual void clear();

    /*
     * Return true if there are not train descriptors in collection.
     */
    CV_WRAP virtual bool empty() const;
    /*
     * Return true if the matcher supports mask in match methods.
     */
    CV_WRAP virtual bool isMaskSupported() const = 0;

    /*
     * Train matcher (e.g. train flann index).
     * In all methods to match the method train() is run every time before matching.
     * Some descriptor matchers (e.g. BruteForceMatcher) have empty implementation
     * of this method, other matchers really train their inner structures
     * (e.g. FlannBasedMatcher trains flann::Index). So nonempty implementation
     * of train() should check the class object state and do traing/retraining
     * only if the state requires that (e.g. FlannBasedMatcher trains flann::Index
     * if it has not trained yet or if new descriptors have been added to the train
     * collection).
     */
    CV_WRAP virtual void train();
    /*
     * Group of methods to match descriptors from image pair.
     * Method train() is run in this methods.
     */
    // Find one best match for each query descriptor (if mask is empty).
    CV_WRAP void match( const Mat& queryDescriptors, const Mat& trainDescriptors,
                CV_OUT vector<DMatch>& matches, const Mat& mask=Mat() ) const;
    // Find k best matches for each query descriptor (in increasing order of distances).
    // compactResult is used when mask is not empty. If compactResult is false matches
    // vector will have the same size as queryDescriptors rows. If compactResult is true
    // matches vector will not contain matches for fully masked out query descriptors.
    CV_WRAP void knnMatch( const Mat& queryDescriptors, const Mat& trainDescriptors,
                   CV_OUT vector<vector<DMatch> >& matches, int k,
                   const Mat& mask=Mat(), bool compactResult=false ) const;
    // Find best matches for each query descriptor which have distance less than
    // maxDistance (in increasing order of distances).
    void radiusMatch( const Mat& queryDescriptors, const Mat& trainDescriptors,
                      vector<vector<DMatch> >& matches, float maxDistance,
                      const Mat& mask=Mat(), bool compactResult=false ) const;
    /*
     * Group of methods to match descriptors from one image to image set.
     * See description of similar methods for matching image pair above.
     */
    CV_WRAP void match( const Mat& queryDescriptors, CV_OUT vector<DMatch>& matches,
                const vector<Mat>& masks=vector<Mat>() );
    CV_WRAP void knnMatch( const Mat& queryDescriptors, CV_OUT vector<vector<DMatch> >& matches, int k,
           const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
    void radiusMatch( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance,
                   const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );

    // Reads matcher object from a file node
    virtual void read( const FileNode& );
    // Writes matcher object to a file storage
    virtual void write( FileStorage& ) const;

    // Clone the matcher. If emptyTrainData is false the method create deep copy of the object, i.e. copies
    // both parameters and train data. If emptyTrainData is true the method create object copy with current parameters
    // but with empty train data.
    virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const = 0;

    CV_WRAP static Ptr<DescriptorMatcher> create( const string& descriptorMatcherType );
protected:
    /*
     * Class to work with descriptors from several images as with one merged matrix.
     * It is used e.g. in FlannBasedMatcher.
     */
    class CV_EXPORTS DescriptorCollection
    {
    public:
        DescriptorCollection();
        DescriptorCollection( const DescriptorCollection& collection );
        virtual ~DescriptorCollection();

        // Vector of matrices "descriptors" will be merged to one matrix "mergedDescriptors" here.
        void set( const vector<Mat>& descriptors );
        virtual void clear();

        const Mat& getDescriptors() const;
        const Mat getDescriptor( int imgIdx, int localDescIdx ) const;
        const Mat getDescriptor( int globalDescIdx ) const;
        void getLocalIdx( int globalDescIdx, int& imgIdx, int& localDescIdx ) const;

        int size() const;

    protected:
        Mat mergedDescriptors;
        vector<int> startIdxs;
    };

    // In fact the matching is implemented only by the following two methods. These methods suppose
    // that the class object has been trained already. Public match methods call these methods
    // after calling train().
    virtual void knnMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, int k,
           const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ) = 0;
    virtual void radiusMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance,
           const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ) = 0;

    static bool isPossibleMatch( const Mat& mask, int queryIdx, int trainIdx );
    static bool isMaskedOut( const vector<Mat>& masks, int queryIdx );

    static Mat clone_op( Mat m ) { return m.clone(); }
    void checkMasks( const vector<Mat>& masks, int queryDescriptorsCount ) const;

    // Collection of descriptors from train images.
    vector<Mat> trainDescCollection;
};

/*
 * Brute-force descriptor matcher.
 *
 * For each descriptor in the first set, this matcher finds the closest
 * descriptor in the second set by trying each one.
 *
 * For efficiency, BruteForceMatcher is templated on the distance metric.
 * For float descriptors, a common choice would be cv::L2<float>.
 */
class CV_EXPORTS_W BFMatcher : public DescriptorMatcher
{
public:
    CV_WRAP BFMatcher( int normType=NORM_L2, bool crossCheck=false );
    virtual ~BFMatcher() {}

    virtual bool isMaskSupported() const { return true; }

    virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const;

    AlgorithmInfo* info() const;
protected:
    virtual void knnMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, int k,
           const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
    virtual void radiusMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance,
           const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );

    int normType;
    bool crossCheck;
};


/*
 * Flann based matcher
 */
class CV_EXPORTS_W FlannBasedMatcher : public DescriptorMatcher
{
public:
    CV_WRAP FlannBasedMatcher( const Ptr<flann::IndexParams>& indexParams=new flann::KDTreeIndexParams(),
                       const Ptr<flann::SearchParams>& searchParams=new flann::SearchParams() );

    virtual void add( const vector<Mat>& descriptors );
    virtual void clear();

    // Reads matcher object from a file node
    virtual void read( const FileNode& );
    // Writes matcher object to a file storage
    virtual void write( FileStorage& ) const;

    virtual void train();
    virtual bool isMaskSupported() const;

    virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const;

    AlgorithmInfo* info() const;
protected:
    static void convertToDMatches( const DescriptorCollection& descriptors,
                                   const Mat& indices, const Mat& distances,
                                   vector<vector<DMatch> >& matches );

    virtual void knnMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, int k,
                   const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
    virtual void radiusMatchImpl( const Mat& queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance,
                   const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );

    Ptr<flann::IndexParams> indexParams;
    Ptr<flann::SearchParams> searchParams;
    Ptr<flann::Index> flannIndex;

    DescriptorCollection mergedDescriptors;
    int addedDescCount;
};

/****************************************************************************************\
*                                GenericDescriptorMatcher                                *
\****************************************************************************************/
/*
 *   Abstract interface for a keypoint descriptor and matcher
 */
class GenericDescriptorMatcher;
typedef GenericDescriptorMatcher GenericDescriptorMatch;

class CV_EXPORTS GenericDescriptorMatcher
{
public:
    GenericDescriptorMatcher();
    virtual ~GenericDescriptorMatcher();

    /*
     * Add train collection: images and keypoints from them.
     * images       A set of train images.
     * ketpoints    Keypoint collection that have been detected on train images.
     *
     * Keypoints for which a descriptor cannot be computed are removed. Such keypoints
     * must be filtered in this method befor adding keypoints to train collection "trainPointCollection".
     * If inheritor class need perform such prefiltering the method add() must be overloaded.
     * In the other class methods programmer has access to the train keypoints by a constant link.
     */
    virtual void add( const vector<Mat>& images,
                      vector<vector<KeyPoint> >& keypoints );

    const vector<Mat>& getTrainImages() const;
    const vector<vector<KeyPoint> >& getTrainKeypoints() const;

    /*
     * Clear images and keypoints storing in train collection.
     */
    virtual void clear();
    /*
     * Returns true if matcher supports mask to match descriptors.
     */
    virtual bool isMaskSupported() = 0;
    /*
     * Train some inner structures (e.g. flann index or decision trees).
     * train() methods is run every time in matching methods. So the method implementation
     * should has a check whether these inner structures need be trained/retrained or not.
     */
    virtual void train();

    /*
     * Classifies query keypoints.
     * queryImage    The query image
     * queryKeypoints   Keypoints from the query image
     * trainImage    The train image
     * trainKeypoints   Keypoints from the train image
     */
    // Classify keypoints from query image under one train image.
    void classify( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                           const Mat& trainImage, vector<KeyPoint>& trainKeypoints ) const;
    // Classify keypoints from query image under train image collection.
    void classify( const Mat& queryImage, vector<KeyPoint>& queryKeypoints );

    /*
     * Group of methods to match keypoints from image pair.
     * Keypoints for which a descriptor cannot be computed are removed.
     * train() method is called here.
     */
    // Find one best match for each query descriptor (if mask is empty).
    void match( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
                vector<DMatch>& matches, const Mat& mask=Mat() ) const;
    // Find k best matches for each query keypoint (in increasing order of distances).
    // compactResult is used when mask is not empty. If compactResult is false matches
    // vector will have the same size as queryDescriptors rows.
    // If compactResult is true matches vector will not contain matches for fully masked out query descriptors.
    void knnMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                   const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
                   vector<vector<DMatch> >& matches, int k,
                   const Mat& mask=Mat(), bool compactResult=false ) const;
    // Find best matches for each query descriptor which have distance less than maxDistance (in increasing order of distances).
    void radiusMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                      const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
                      vector<vector<DMatch> >& matches, float maxDistance,
                      const Mat& mask=Mat(), bool compactResult=false ) const;
    /*
     * Group of methods to match keypoints from one image to image set.
     * See description of similar methods for matching image pair above.
     */
    void match( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                vector<DMatch>& matches, const vector<Mat>& masks=vector<Mat>() );
    void knnMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                   vector<vector<DMatch> >& matches, int k,
                   const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
    void radiusMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                      vector<vector<DMatch> >& matches, float maxDistance,
                      const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );

    // Reads matcher object from a file node
    virtual void read( const FileNode& fn );
    // Writes matcher object to a file storage
    virtual void write( FileStorage& fs ) const;

    // Return true if matching object is empty (e.g. feature detector or descriptor matcher are empty)
    virtual bool empty() const;

    // Clone the matcher. If emptyTrainData is false the method create deep copy of the object, i.e. copies
    // both parameters and train data. If emptyTrainData is true the method create object copy with current parameters
    // but with empty train data.
    virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const = 0;

    static Ptr<GenericDescriptorMatcher> create( const string& genericDescritptorMatcherType,
                                                 const string &paramsFilename=string() );

protected:
    // In fact the matching is implemented only by the following two methods. These methods suppose
    // that the class object has been trained already. Public match methods call these methods
    // after calling train().
    virtual void knnMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                               vector<vector<DMatch> >& matches, int k,
                               const vector<Mat>& masks, bool compactResult ) = 0;
    virtual void radiusMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                                  vector<vector<DMatch> >& matches, float maxDistance,
                                  const vector<Mat>& masks, bool compactResult ) = 0;
    /*
     * A storage for sets of keypoints together with corresponding images and class IDs
     */
    class CV_EXPORTS KeyPointCollection
    {
    public:
        KeyPointCollection();
        KeyPointCollection( const KeyPointCollection& collection );
        void add( const vector<Mat>& images, const vector<vector<KeyPoint> >& keypoints );
        void clear();

        // Returns the total number of keypoints in the collection
        size_t keypointCount() const;
        size_t imageCount() const;

        const vector<vector<KeyPoint> >& getKeypoints() const;
        const vector<KeyPoint>& getKeypoints( int imgIdx ) const;
        const KeyPoint& getKeyPoint( int imgIdx, int localPointIdx ) const;
        const KeyPoint& getKeyPoint( int globalPointIdx ) const;
        void getLocalIdx( int globalPointIdx, int& imgIdx, int& localPointIdx ) const;

        const vector<Mat>& getImages() const;
        const Mat& getImage( int imgIdx ) const;

    protected:
        int pointCount;

        vector<Mat> images;
        vector<vector<KeyPoint> > keypoints;
        // global indices of the first points in each image, startIndices.size() = keypoints.size()
        vector<int> startIndices;

    private:
        static Mat clone_op( Mat m ) { return m.clone(); }
    };

    KeyPointCollection trainPointCollection;
};


/****************************************************************************************\
*                                VectorDescriptorMatcher                                 *
\****************************************************************************************/

/*
 *  A class used for matching descriptors that can be described as vectors in a finite-dimensional space
 */
class VectorDescriptorMatcher;
typedef VectorDescriptorMatcher VectorDescriptorMatch;

class CV_EXPORTS VectorDescriptorMatcher : public GenericDescriptorMatcher
{
public:
    VectorDescriptorMatcher( const Ptr<DescriptorExtractor>& extractor, const Ptr<DescriptorMatcher>& matcher );
    virtual ~VectorDescriptorMatcher();

    virtual void add( const vector<Mat>& imgCollection,
                      vector<vector<KeyPoint> >& pointCollection );

    virtual void clear();

    virtual void train();

    virtual bool isMaskSupported();

    virtual void read( const FileNode& fn );
    virtual void write( FileStorage& fs ) const;
    virtual bool empty() const;

    virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const;

protected:
    virtual void knnMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                               vector<vector<DMatch> >& matches, int k,
                               const vector<Mat>& masks, bool compactResult );
    virtual void radiusMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
                                  vector<vector<DMatch> >& matches, float maxDistance,
                                  const vector<Mat>& masks, bool compactResult );

    Ptr<DescriptorExtractor> extractor;
    Ptr<DescriptorMatcher> matcher;
};

/****************************************************************************************\
*                                   Drawing functions                                    *
\****************************************************************************************/
struct CV_EXPORTS DrawMatchesFlags
{
    enum{ DEFAULT = 0, // Output image matrix will be created (Mat::create),
                       // i.e. existing memory of output image may be reused.
                       // Two source image, matches and single keypoints will be drawn.
                       // For each keypoint only the center point will be drawn (without
                       // the circle around keypoint with keypoint size and orientation).
          DRAW_OVER_OUTIMG = 1, // Output image matrix will not be created (Mat::create).
                                // Matches will be drawn on existing content of output image.
          NOT_DRAW_SINGLE_POINTS = 2, // Single keypoints will not be drawn.
          DRAW_RICH_KEYPOINTS = 4 // For each keypoint the circle around keypoint with keypoint size and
                                  // orientation will be drawn.
        };
};

// Draw keypoints.
CV_EXPORTS_W void drawKeypoints( const Mat& image, const vector<KeyPoint>& keypoints, CV_OUT Mat& outImage,
                               const Scalar& color=Scalar::all(-1), int flags=DrawMatchesFlags::DEFAULT );

// Draws matches of keypints from two images on output image.
CV_EXPORTS void drawMatches( const Mat& img1, const vector<KeyPoint>& keypoints1,
                             const Mat& img2, const vector<KeyPoint>& keypoints2,
                             const vector<DMatch>& matches1to2, Mat& outImg,
                             const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1),
                             const vector<char>& matchesMask=vector<char>(), int flags=DrawMatchesFlags::DEFAULT );

CV_EXPORTS void drawMatches( const Mat& img1, const vector<KeyPoint>& keypoints1,
                             const Mat& img2, const vector<KeyPoint>& keypoints2,
                             const vector<vector<DMatch> >& matches1to2, Mat& outImg,
                             const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1),
                             const vector<vector<char> >& matchesMask=vector<vector<char> >(), int flags=DrawMatchesFlags::DEFAULT );

/****************************************************************************************\
*   Functions to evaluate the feature detectors and [generic] descriptor extractors      *
\****************************************************************************************/

CV_EXPORTS void evaluateFeatureDetector( const Mat& img1, const Mat& img2, const Mat& H1to2,
                                         vector<KeyPoint>* keypoints1, vector<KeyPoint>* keypoints2,
                                         float& repeatability, int& correspCount,
                                         const Ptr<FeatureDetector>& fdetector=Ptr<FeatureDetector>() );

CV_EXPORTS void computeRecallPrecisionCurve( const vector<vector<DMatch> >& matches1to2,
                                             const vector<vector<uchar> >& correctMatches1to2Mask,
                                             vector<Point2f>& recallPrecisionCurve );

CV_EXPORTS float getRecall( const vector<Point2f>& recallPrecisionCurve, float l_precision );
CV_EXPORTS int getNearestPoint( const vector<Point2f>& recallPrecisionCurve, float l_precision );

CV_EXPORTS void evaluateGenericDescriptorMatcher( const Mat& img1, const Mat& img2, const Mat& H1to2,
                                                  vector<KeyPoint>& keypoints1, vector<KeyPoint>& keypoints2,
                                                  vector<vector<DMatch> >* matches1to2, vector<vector<uchar> >* correctMatches1to2Mask,
                                                  vector<Point2f>& recallPrecisionCurve,
                                                  const Ptr<GenericDescriptorMatcher>& dmatch=Ptr<GenericDescriptorMatcher>() );


/****************************************************************************************\
*                                     Bag of visual words                                *
\****************************************************************************************/
/*
 * Abstract base class for training of a 'bag of visual words' vocabulary from a set of descriptors
 */
class CV_EXPORTS_W BOWTrainer
{
public:
    BOWTrainer();
    virtual ~BOWTrainer();

    CV_WRAP void add( const Mat& descriptors );
    CV_WRAP const vector<Mat>& getDescriptors() const;
    CV_WRAP int descripotorsCount() const;

    CV_WRAP virtual void clear();

    /*
     * Train visual words vocabulary, that is cluster training descriptors and
     * compute cluster centers.
     * Returns cluster centers.
     *
     * descriptors      Training descriptors computed on images keypoints.
     */
    CV_WRAP virtual Mat cluster() const = 0;
    CV_WRAP virtual Mat cluster( const Mat& descriptors ) const = 0;

protected:
    vector<Mat> descriptors;
    int size;
};

/*
 * This is BOWTrainer using cv::kmeans to get vocabulary.
 */
class CV_EXPORTS_W BOWKMeansTrainer : public BOWTrainer
{
public:
    CV_WRAP BOWKMeansTrainer( int clusterCount, const TermCriteria& termcrit=TermCriteria(),
                      int attempts=3, int flags=KMEANS_PP_CENTERS );
    virtual ~BOWKMeansTrainer();

    // Returns trained vocabulary (i.e. cluster centers).
    CV_WRAP virtual Mat cluster() const;
    CV_WRAP virtual Mat cluster( const Mat& descriptors ) const;

protected:

    int clusterCount;
    TermCriteria termcrit;
    int attempts;
    int flags;
};

/*
 * Class to compute image descriptor using bag of visual words.
 */
class CV_EXPORTS_W BOWImgDescriptorExtractor
{
public:
    CV_WRAP BOWImgDescriptorExtractor( const Ptr<DescriptorExtractor>& dextractor,
                               const Ptr<DescriptorMatcher>& dmatcher );
    virtual ~BOWImgDescriptorExtractor();

    CV_WRAP void setVocabulary( const Mat& vocabulary );
    CV_WRAP const Mat& getVocabulary() const;
    void compute( const Mat& image, vector<KeyPoint>& keypoints, Mat& imgDescriptor,
                  vector<vector<int> >* pointIdxsOfClusters=0, Mat* descriptors=0 );
    // compute() is not constant because DescriptorMatcher::match is not constant

    CV_WRAP_AS(compute) void compute2( const Mat& image, vector<KeyPoint>& keypoints, CV_OUT Mat& imgDescriptor )
    { compute(image,keypoints,imgDescriptor); }

    CV_WRAP int descriptorSize() const;
    CV_WRAP int descriptorType() const;

protected:
    Mat vocabulary;
    Ptr<DescriptorExtractor> dextractor;
    Ptr<DescriptorMatcher> dmatcher;
};

} /* namespace cv */

#endif /* __cplusplus */

#endif

/* End of file. */