summaryrefslogtreecommitdiff
path: root/2.3-1/thirdparty/raspberrypi/includes/opencv2/contrib/contrib.hpp
blob: d58794246eec46309680d034bbc37054df6a86fb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_CONTRIB_HPP__
#define __OPENCV_CONTRIB_HPP__

#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/objdetect/objdetect.hpp"

#ifdef __cplusplus

/****************************************************************************************\
*                                   Adaptive Skin Detector                               *
\****************************************************************************************/

class CV_EXPORTS CvAdaptiveSkinDetector
{
private:
    enum {
        GSD_HUE_LT = 3,
        GSD_HUE_UT = 33,
        GSD_INTENSITY_LT = 15,
        GSD_INTENSITY_UT = 250
    };

    class CV_EXPORTS Histogram
    {
    private:
        enum {
            HistogramSize = (GSD_HUE_UT - GSD_HUE_LT + 1)
        };

    protected:
        int findCoverageIndex(double surfaceToCover, int defaultValue = 0);

    public:
        CvHistogram *fHistogram;
        Histogram();
        virtual ~Histogram();

        void findCurveThresholds(int &x1, int &x2, double percent = 0.05);
        void mergeWith(Histogram *source, double weight);
    };

    int nStartCounter, nFrameCount, nSkinHueLowerBound, nSkinHueUpperBound, nMorphingMethod, nSamplingDivider;
    double fHistogramMergeFactor, fHuePercentCovered;
    Histogram histogramHueMotion, skinHueHistogram;
    IplImage *imgHueFrame, *imgSaturationFrame, *imgLastGrayFrame, *imgMotionFrame, *imgFilteredFrame;
    IplImage *imgShrinked, *imgTemp, *imgGrayFrame, *imgHSVFrame;

protected:
    void initData(IplImage *src, int widthDivider, int heightDivider);
    void adaptiveFilter();

public:

    enum {
        MORPHING_METHOD_NONE = 0,
        MORPHING_METHOD_ERODE = 1,
        MORPHING_METHOD_ERODE_ERODE = 2,
        MORPHING_METHOD_ERODE_DILATE = 3
    };

    CvAdaptiveSkinDetector(int samplingDivider = 1, int morphingMethod = MORPHING_METHOD_NONE);
    virtual ~CvAdaptiveSkinDetector();

    virtual void process(IplImage *inputBGRImage, IplImage *outputHueMask);
};


/****************************************************************************************\
 *                                  Fuzzy MeanShift Tracker                               *
 \****************************************************************************************/

class CV_EXPORTS CvFuzzyPoint {
public:
    double x, y, value;

    CvFuzzyPoint(double _x, double _y);
};

class CV_EXPORTS CvFuzzyCurve {
private:
    std::vector<CvFuzzyPoint> points;
    double value, centre;

    bool between(double x, double x1, double x2);

public:
    CvFuzzyCurve();
    ~CvFuzzyCurve();

    void setCentre(double _centre);
    double getCentre();
    void clear();
    void addPoint(double x, double y);
    double calcValue(double param);
    double getValue();
    void setValue(double _value);
};

class CV_EXPORTS CvFuzzyFunction {
public:
    std::vector<CvFuzzyCurve> curves;

    CvFuzzyFunction();
    ~CvFuzzyFunction();
    void addCurve(CvFuzzyCurve *curve, double value = 0);
    void resetValues();
    double calcValue();
    CvFuzzyCurve *newCurve();
};

class CV_EXPORTS CvFuzzyRule {
private:
    CvFuzzyCurve *fuzzyInput1, *fuzzyInput2;
    CvFuzzyCurve *fuzzyOutput;
public:
    CvFuzzyRule();
    ~CvFuzzyRule();
    void setRule(CvFuzzyCurve *c1, CvFuzzyCurve *c2, CvFuzzyCurve *o1);
    double calcValue(double param1, double param2);
    CvFuzzyCurve *getOutputCurve();
};

class CV_EXPORTS CvFuzzyController {
private:
    std::vector<CvFuzzyRule*> rules;
public:
    CvFuzzyController();
    ~CvFuzzyController();
    void addRule(CvFuzzyCurve *c1, CvFuzzyCurve *c2, CvFuzzyCurve *o1);
    double calcOutput(double param1, double param2);
};

class CV_EXPORTS CvFuzzyMeanShiftTracker
{
private:
    class FuzzyResizer
    {
    private:
        CvFuzzyFunction iInput, iOutput;
        CvFuzzyController fuzzyController;
    public:
        FuzzyResizer();
        int calcOutput(double edgeDensity, double density);
    };

    class SearchWindow
    {
    public:
        FuzzyResizer *fuzzyResizer;
        int x, y;
        int width, height, maxWidth, maxHeight, ellipseHeight, ellipseWidth;
        int ldx, ldy, ldw, ldh, numShifts, numIters;
        int xGc, yGc;
        long m00, m01, m10, m11, m02, m20;
        double ellipseAngle;
        double density;
        unsigned int depthLow, depthHigh;
        int verticalEdgeLeft, verticalEdgeRight, horizontalEdgeTop, horizontalEdgeBottom;

        SearchWindow();
        ~SearchWindow();
        void setSize(int _x, int _y, int _width, int _height);
        void initDepthValues(IplImage *maskImage, IplImage *depthMap);
        bool shift();
        void extractInfo(IplImage *maskImage, IplImage *depthMap, bool initDepth);
        void getResizeAttribsEdgeDensityLinear(int &resizeDx, int &resizeDy, int &resizeDw, int &resizeDh);
        void getResizeAttribsInnerDensity(int &resizeDx, int &resizeDy, int &resizeDw, int &resizeDh);
        void getResizeAttribsEdgeDensityFuzzy(int &resizeDx, int &resizeDy, int &resizeDw, int &resizeDh);
        bool meanShift(IplImage *maskImage, IplImage *depthMap, int maxIteration, bool initDepth);
    };

public:
    enum TrackingState
    {
        tsNone          = 0,
        tsSearching     = 1,
        tsTracking      = 2,
        tsSetWindow     = 3,
        tsDisabled      = 10
    };

    enum ResizeMethod {
        rmEdgeDensityLinear     = 0,
        rmEdgeDensityFuzzy      = 1,
        rmInnerDensity          = 2
    };

    enum {
        MinKernelMass           = 1000
    };

    SearchWindow kernel;
    int searchMode;

private:
    enum
    {
        MaxMeanShiftIteration   = 5,
        MaxSetSizeIteration     = 5
    };

    void findOptimumSearchWindow(SearchWindow &searchWindow, IplImage *maskImage, IplImage *depthMap, int maxIteration, int resizeMethod, bool initDepth);

public:
    CvFuzzyMeanShiftTracker();
    ~CvFuzzyMeanShiftTracker();

    void track(IplImage *maskImage, IplImage *depthMap, int resizeMethod, bool resetSearch, int minKernelMass = MinKernelMass);
};


namespace cv
{

    class CV_EXPORTS Octree
    {
    public:
        struct Node
        {
            Node() {}
            int begin, end;
            float x_min, x_max, y_min, y_max, z_min, z_max;
            int maxLevels;
            bool isLeaf;
            int children[8];
        };

        Octree();
        Octree( const vector<Point3f>& points, int maxLevels = 10, int minPoints = 20 );
        virtual ~Octree();

        virtual void buildTree( const vector<Point3f>& points, int maxLevels = 10, int minPoints = 20 );
        virtual void getPointsWithinSphere( const Point3f& center, float radius,
                                           vector<Point3f>& points ) const;
        const vector<Node>& getNodes() const { return nodes; }
    private:
        int minPoints;
        vector<Point3f> points;
        vector<Node> nodes;

        virtual void buildNext(size_t node_ind);
    };


    class CV_EXPORTS Mesh3D
    {
    public:
        struct EmptyMeshException {};

        Mesh3D();
        Mesh3D(const vector<Point3f>& vtx);
        ~Mesh3D();

        void buildOctree();
        void clearOctree();
        float estimateResolution(float tryRatio = 0.1f);
        void computeNormals(float normalRadius, int minNeighbors = 20);
        void computeNormals(const vector<int>& subset, float normalRadius, int minNeighbors = 20);

        void writeAsVrml(const String& file, const vector<Scalar>& colors = vector<Scalar>()) const;

        vector<Point3f> vtx;
        vector<Point3f> normals;
        float resolution;
        Octree octree;

        const static Point3f allzero;
    };

    class CV_EXPORTS SpinImageModel
    {
    public:

        /* model parameters, leave unset for default or auto estimate */
        float normalRadius;
        int minNeighbors;

        float binSize;
        int imageWidth;

        float lambda;
        float gamma;

        float T_GeometriccConsistency;
        float T_GroupingCorespondances;

        /* public interface */
        SpinImageModel();
        explicit SpinImageModel(const Mesh3D& mesh);
        ~SpinImageModel();

        void setLogger(std::ostream* log);
        void selectRandomSubset(float ratio);
        void setSubset(const vector<int>& subset);
        void compute();

        void match(const SpinImageModel& scene, vector< vector<Vec2i> >& result);

        Mat packRandomScaledSpins(bool separateScale = false, size_t xCount = 10, size_t yCount = 10) const;

        size_t getSpinCount() const { return spinImages.rows; }
        Mat getSpinImage(size_t index) const { return spinImages.row((int)index); }
        const Point3f& getSpinVertex(size_t index) const { return mesh.vtx[subset[index]]; }
        const Point3f& getSpinNormal(size_t index) const { return mesh.normals[subset[index]]; }

        const Mesh3D& getMesh() const { return mesh; }
        Mesh3D& getMesh() { return mesh; }

        /* static utility functions */
        static bool spinCorrelation(const Mat& spin1, const Mat& spin2, float lambda, float& result);

        static Point2f calcSpinMapCoo(const Point3f& point, const Point3f& vertex, const Point3f& normal);

        static float geometricConsistency(const Point3f& pointScene1, const Point3f& normalScene1,
                                          const Point3f& pointModel1, const Point3f& normalModel1,
                                          const Point3f& pointScene2, const Point3f& normalScene2,
                                          const Point3f& pointModel2, const Point3f& normalModel2);

        static float groupingCreteria(const Point3f& pointScene1, const Point3f& normalScene1,
                                      const Point3f& pointModel1, const Point3f& normalModel1,
                                      const Point3f& pointScene2, const Point3f& normalScene2,
                                      const Point3f& pointModel2, const Point3f& normalModel2,
                                      float gamma);
    protected:
        void defaultParams();

        void matchSpinToModel(const Mat& spin, vector<int>& indeces,
                              vector<float>& corrCoeffs, bool useExtremeOutliers = true) const;

        void repackSpinImages(const vector<uchar>& mask, Mat& spinImages, bool reAlloc = true) const;

        vector<int> subset;
        Mesh3D mesh;
        Mat spinImages;
        std::ostream* out;
    };

    class CV_EXPORTS TickMeter
    {
    public:
        TickMeter();
        void start();
        void stop();

        int64 getTimeTicks() const;
        double getTimeMicro() const;
        double getTimeMilli() const;
        double getTimeSec()   const;
        int64 getCounter() const;

        void reset();
    private:
        int64 counter;
        int64 sumTime;
        int64 startTime;
    };

    CV_EXPORTS std::ostream& operator<<(std::ostream& out, const TickMeter& tm);

    class CV_EXPORTS SelfSimDescriptor
    {
    public:
        SelfSimDescriptor();
        SelfSimDescriptor(int _ssize, int _lsize,
                          int _startDistanceBucket=DEFAULT_START_DISTANCE_BUCKET,
                          int _numberOfDistanceBuckets=DEFAULT_NUM_DISTANCE_BUCKETS,
                          int _nangles=DEFAULT_NUM_ANGLES);
        SelfSimDescriptor(const SelfSimDescriptor& ss);
        virtual ~SelfSimDescriptor();
        SelfSimDescriptor& operator = (const SelfSimDescriptor& ss);

        size_t getDescriptorSize() const;
        Size getGridSize( Size imgsize, Size winStride ) const;

        virtual void compute(const Mat& img, vector<float>& descriptors, Size winStride=Size(),
                             const vector<Point>& locations=vector<Point>()) const;
        virtual void computeLogPolarMapping(Mat& mappingMask) const;
        virtual void SSD(const Mat& img, Point pt, Mat& ssd) const;

        int smallSize;
        int largeSize;
        int startDistanceBucket;
        int numberOfDistanceBuckets;
        int numberOfAngles;

        enum { DEFAULT_SMALL_SIZE = 5, DEFAULT_LARGE_SIZE = 41,
            DEFAULT_NUM_ANGLES = 20, DEFAULT_START_DISTANCE_BUCKET = 3,
            DEFAULT_NUM_DISTANCE_BUCKETS = 7 };
    };


    typedef bool (*BundleAdjustCallback)(int iteration, double norm_error, void* user_data);

    class CV_EXPORTS LevMarqSparse {
    public:
        LevMarqSparse();
        LevMarqSparse(int npoints, // number of points
                      int ncameras, // number of cameras
                      int nPointParams, // number of params per one point  (3 in case of 3D points)
                      int nCameraParams, // number of parameters per one camera
                      int nErrParams, // number of parameters in measurement vector
                      // for 1 point at one camera (2 in case of 2D projections)
                      Mat& visibility, // visibility matrix. rows correspond to points, columns correspond to cameras
                      // 1 - point is visible for the camera, 0 - invisible
                      Mat& P0, // starting vector of parameters, first cameras then points
                      Mat& X, // measurements, in order of visibility. non visible cases are skipped
                      TermCriteria criteria, // termination criteria

                      // callback for estimation of Jacobian matrices
                      void (CV_CDECL * fjac)(int i, int j, Mat& point_params,
                                             Mat& cam_params, Mat& A, Mat& B, void* data),
                      // callback for estimation of backprojection errors
                      void (CV_CDECL * func)(int i, int j, Mat& point_params,
                                             Mat& cam_params, Mat& estim, void* data),
                      void* data, // user-specific data passed to the callbacks
                      BundleAdjustCallback cb, void* user_data
                      );

        virtual ~LevMarqSparse();

        virtual void run( int npoints, // number of points
                         int ncameras, // number of cameras
                         int nPointParams, // number of params per one point  (3 in case of 3D points)
                         int nCameraParams, // number of parameters per one camera
                         int nErrParams, // number of parameters in measurement vector
                         // for 1 point at one camera (2 in case of 2D projections)
                         Mat& visibility, // visibility matrix. rows correspond to points, columns correspond to cameras
                         // 1 - point is visible for the camera, 0 - invisible
                         Mat& P0, // starting vector of parameters, first cameras then points
                         Mat& X, // measurements, in order of visibility. non visible cases are skipped
                         TermCriteria criteria, // termination criteria

                         // callback for estimation of Jacobian matrices
                         void (CV_CDECL * fjac)(int i, int j, Mat& point_params,
                                                Mat& cam_params, Mat& A, Mat& B, void* data),
                         // callback for estimation of backprojection errors
                         void (CV_CDECL * func)(int i, int j, Mat& point_params,
                                                Mat& cam_params, Mat& estim, void* data),
                         void* data // user-specific data passed to the callbacks
                         );

        virtual void clear();

        // useful function to do simple bundle adjustment tasks
        static void bundleAdjust(vector<Point3d>& points, // positions of points in global coordinate system (input and output)
                                 const vector<vector<Point2d> >& imagePoints, // projections of 3d points for every camera
                                 const vector<vector<int> >& visibility, // visibility of 3d points for every camera
                                 vector<Mat>& cameraMatrix, // intrinsic matrices of all cameras (input and output)
                                 vector<Mat>& R, // rotation matrices of all cameras (input and output)
                                 vector<Mat>& T, // translation vector of all cameras (input and output)
                                 vector<Mat>& distCoeffs, // distortion coefficients of all cameras (input and output)
                                 const TermCriteria& criteria=
                                 TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, DBL_EPSILON),
                                 BundleAdjustCallback cb = 0, void* user_data = 0);

    public:
        virtual void optimize(CvMat &_vis); //main function that runs minimization

        //iteratively asks for measurement for visible camera-point pairs
        void ask_for_proj(CvMat &_vis,bool once=false);
        //iteratively asks for Jacobians for every camera_point pair
        void ask_for_projac(CvMat &_vis);

        CvMat* err; //error X-hX
        double prevErrNorm, errNorm;
        double lambda;
        CvTermCriteria criteria;
        int iters;

        CvMat** U; //size of array is equal to number of cameras
        CvMat** V; //size of array is equal to number of points
        CvMat** inv_V_star; //inverse of V*

        CvMat** A;
        CvMat** B;
        CvMat** W;

        CvMat* X; //measurement
        CvMat* hX; //current measurement extimation given new parameter vector

        CvMat* prevP; //current already accepted parameter.
        CvMat* P; // parameters used to evaluate function with new params
        // this parameters may be rejected

        CvMat* deltaP; //computed increase of parameters (result of normal system solution )

        CvMat** ea; // sum_i  AijT * e_ij , used as right part of normal equation
        // length of array is j = number of cameras
        CvMat** eb; // sum_j  BijT * e_ij , used as right part of normal equation
        // length of array is i = number of points

        CvMat** Yj; //length of array is i = num_points

        CvMat* S; //big matrix of block Sjk  , each block has size num_cam_params x num_cam_params

        CvMat* JtJ_diag; //diagonal of JtJ,  used to backup diagonal elements before augmentation

        CvMat* Vis_index; // matrix which element is index of measurement for point i and camera j

        int num_cams;
        int num_points;
        int num_err_param;
        int num_cam_param;
        int num_point_param;

        //target function and jacobian pointers, which needs to be initialized
        void (*fjac)(int i, int j, Mat& point_params, Mat& cam_params, Mat& A, Mat& B, void* data);
        void (*func)(int i, int j, Mat& point_params, Mat& cam_params, Mat& estim, void* data);

        void* data;

        BundleAdjustCallback cb;
        void* user_data;
    };

    CV_EXPORTS_W int chamerMatching( Mat& img, Mat& templ,
                                  CV_OUT vector<vector<Point> >& results, CV_OUT vector<float>& cost,
                                  double templScale=1, int maxMatches = 20,
                                  double minMatchDistance = 1.0, int padX = 3,
                                  int padY = 3, int scales = 5, double minScale = 0.6, double maxScale = 1.6,
                                  double orientationWeight = 0.5, double truncate = 20);


    class CV_EXPORTS_W StereoVar
    {
    public:
        // Flags
        enum {USE_INITIAL_DISPARITY = 1, USE_EQUALIZE_HIST = 2, USE_SMART_ID = 4, USE_AUTO_PARAMS = 8, USE_MEDIAN_FILTERING = 16};
        enum {CYCLE_O, CYCLE_V};
        enum {PENALIZATION_TICHONOV, PENALIZATION_CHARBONNIER, PENALIZATION_PERONA_MALIK};

        //! the default constructor
        CV_WRAP StereoVar();

        //! the full constructor taking all the necessary algorithm parameters
        CV_WRAP StereoVar(int levels, double pyrScale, int nIt, int minDisp, int maxDisp, int poly_n, double poly_sigma, float fi, float lambda, int penalization, int cycle, int flags);

        //! the destructor
        virtual ~StereoVar();

        //! the stereo correspondence operator that computes disparity map for the specified rectified stereo pair
        CV_WRAP_AS(compute) virtual void operator()(const Mat& left, const Mat& right, CV_OUT Mat& disp);

        CV_PROP_RW int      levels;
        CV_PROP_RW double   pyrScale;
        CV_PROP_RW int      nIt;
        CV_PROP_RW int      minDisp;
        CV_PROP_RW int      maxDisp;
        CV_PROP_RW int      poly_n;
        CV_PROP_RW double   poly_sigma;
        CV_PROP_RW float    fi;
        CV_PROP_RW float    lambda;
        CV_PROP_RW int      penalization;
        CV_PROP_RW int      cycle;
        CV_PROP_RW int      flags;

    private:
        void autoParams();
        void FMG(Mat &I1, Mat &I2, Mat &I2x, Mat &u, int level);
        void VCycle_MyFAS(Mat &I1_h, Mat &I2_h, Mat &I2x_h, Mat &u_h, int level);
        void VariationalSolver(Mat &I1_h, Mat &I2_h, Mat &I2x_h, Mat &u_h, int level);
    };

    CV_EXPORTS void polyfit(const Mat& srcx, const Mat& srcy, Mat& dst, int order);

    class CV_EXPORTS Directory
    {
        public:
            static std::vector<std::string> GetListFiles  ( const std::string& path, const std::string & exten = "*", bool addPath = true );
            static std::vector<std::string> GetListFilesR ( const std::string& path, const std::string & exten = "*", bool addPath = true );
            static std::vector<std::string> GetListFolders( const std::string& path, const std::string & exten = "*", bool addPath = true );
    };

    /*
     * Generation of a set of different colors by the following way:
     * 1) generate more then need colors (in "factor" times) in RGB,
     * 2) convert them to Lab,
     * 3) choose the needed count of colors from the set that are more different from
     *    each other,
     * 4) convert the colors back to RGB
     */
    CV_EXPORTS void generateColors( std::vector<Scalar>& colors, size_t count, size_t factor=100 );


    /*
     *  Estimate the rigid body motion from frame0 to frame1. The method is based on the paper
     *  "Real-Time Visual Odometry from Dense RGB-D Images", F. Steinbucker, J. Strum, D. Cremers, ICCV, 2011.
     */
    enum { ROTATION          = 1,
           TRANSLATION       = 2,
           RIGID_BODY_MOTION = 4
         };
    CV_EXPORTS bool RGBDOdometry( Mat& Rt, const Mat& initRt,
                                  const Mat& image0, const Mat& depth0, const Mat& mask0,
                                  const Mat& image1, const Mat& depth1, const Mat& mask1,
                                  const Mat& cameraMatrix, float minDepth=0.f, float maxDepth=4.f, float maxDepthDiff=0.07f,
                                  const std::vector<int>& iterCounts=std::vector<int>(),
                                  const std::vector<float>& minGradientMagnitudes=std::vector<float>(),
                                  int transformType=RIGID_BODY_MOTION );

    /**
    *Bilinear interpolation technique.
    *
    *The value of a desired cortical pixel is obtained through a bilinear interpolation of the values
    *of the four nearest neighbouring Cartesian pixels to the center of the RF.
    *The same principle is applied to the inverse transformation.
    *
    *More details can be found in http://dx.doi.org/10.1007/978-3-642-23968-7_5
    */
    class CV_EXPORTS LogPolar_Interp
    {
    public:

        LogPolar_Interp() {}

        /**
        *Constructor
        *\param w the width of the input image
        *\param h the height of the input image
        *\param center the transformation center: where the output precision is maximal
        *\param R the number of rings of the cortical image (default value 70 pixel)
        *\param ro0 the radius of the blind spot (default value 3 pixel)
        *\param interp interpolation algorithm
        *\param full \a 1 (default value) means that the retinal image (the inverse transform) is computed within the circumscribing circle.
        *            \a 0 means that the retinal image is computed within the inscribed circle.
        *\param S the number of sectors of the cortical image (default value 70 pixel).
        *         Its value is usually internally computed to obtain a pixel aspect ratio equals to 1.
        *\param sp \a 1 (default value) means that the parameter \a S is internally computed.
        *          \a 0 means that the parameter \a S is provided by the user.
        */
        LogPolar_Interp(int w, int h, Point2i center, int R=70, double ro0=3.0,
                        int interp=INTER_LINEAR, int full=1, int S=117, int sp=1);
        /**
        *Transformation from Cartesian image to cortical (log-polar) image.
        *\param source the Cartesian image
        *\return the transformed image (cortical image)
        */
        const Mat to_cortical(const Mat &source);
        /**
        *Transformation from cortical image to retinal (inverse log-polar) image.
        *\param source the cortical image
        *\return the transformed image (retinal image)
        */
        const Mat to_cartesian(const Mat &source);
        /**
        *Destructor
        */
        ~LogPolar_Interp();

    protected:

        Mat Rsri;
        Mat Csri;

        int S, R, M, N;
        int top, bottom,left,right;
        double ro0, romax, a, q;
        int interp;

        Mat ETAyx;
        Mat CSIyx;

        void create_map(int M, int N, int R, int S, double ro0);
    };

    /**
    *Overlapping circular receptive fields technique
    *
    *The Cartesian plane is divided in two regions: the fovea and the periphery.
    *The fovea (oversampling) is handled by using the bilinear interpolation technique described above, whereas in
    *the periphery we use the overlapping Gaussian circular RFs.
    *
    *More details can be found in http://dx.doi.org/10.1007/978-3-642-23968-7_5
    */
    class CV_EXPORTS LogPolar_Overlapping
    {
    public:
        LogPolar_Overlapping() {}

        /**
        *Constructor
        *\param w the width of the input image
        *\param h the height of the input image
        *\param center the transformation center: where the output precision is maximal
        *\param R the number of rings of the cortical image (default value 70 pixel)
        *\param ro0 the radius of the blind spot (default value 3 pixel)
        *\param full \a 1 (default value) means that the retinal image (the inverse transform) is computed within the circumscribing circle.
        *            \a 0 means that the retinal image is computed within the inscribed circle.
        *\param S the number of sectors of the cortical image (default value 70 pixel).
        *         Its value is usually internally computed to obtain a pixel aspect ratio equals to 1.
        *\param sp \a 1 (default value) means that the parameter \a S is internally computed.
        *          \a 0 means that the parameter \a S is provided by the user.
        */
        LogPolar_Overlapping(int w, int h, Point2i center, int R=70,
                             double ro0=3.0, int full=1, int S=117, int sp=1);
        /**
        *Transformation from Cartesian image to cortical (log-polar) image.
        *\param source the Cartesian image
        *\return the transformed image (cortical image)
        */
        const Mat to_cortical(const Mat &source);
        /**
        *Transformation from cortical image to retinal (inverse log-polar) image.
        *\param source the cortical image
        *\return the transformed image (retinal image)
        */
        const Mat to_cartesian(const Mat &source);
        /**
        *Destructor
        */
        ~LogPolar_Overlapping();

    protected:

        Mat Rsri;
        Mat Csri;
        vector<int> Rsr;
        vector<int> Csr;
        vector<double> Wsr;

        int S, R, M, N, ind1;
        int top, bottom,left,right;
        double ro0, romax, a, q;

        struct kernel
        {
            kernel() { w = 0; }
            vector<double> weights;
            int w;
        };

        Mat ETAyx;
        Mat CSIyx;
        vector<kernel> w_ker_2D;

        void create_map(int M, int N, int R, int S, double ro0);
    };

    /**
    * Adjacent receptive fields technique
    *
    *All the Cartesian pixels, whose coordinates in the cortical domain share the same integer part, are assigned to the same RF.
    *The precision of the boundaries of the RF can be improved by breaking each pixel into subpixels and assigning each of them to the correct RF.
    *This technique is implemented from: Traver, V., Pla, F.: Log-polar mapping template design: From task-level requirements
    *to geometry parameters. Image Vision Comput. 26(10) (2008) 1354-1370
    *
    *More details can be found in http://dx.doi.org/10.1007/978-3-642-23968-7_5
    */
    class CV_EXPORTS LogPolar_Adjacent
    {
    public:
        LogPolar_Adjacent() {}

        /**
         *Constructor
         *\param w the width of the input image
         *\param h the height of the input image
         *\param center the transformation center: where the output precision is maximal
         *\param R the number of rings of the cortical image (default value 70 pixel)
         *\param ro0 the radius of the blind spot (default value 3 pixel)
         *\param smin the size of the subpixel (default value 0.25 pixel)
         *\param full \a 1 (default value) means that the retinal image (the inverse transform) is computed within the circumscribing circle.
         *            \a 0 means that the retinal image is computed within the inscribed circle.
         *\param S the number of sectors of the cortical image (default value 70 pixel).
         *         Its value is usually internally computed to obtain a pixel aspect ratio equals to 1.
         *\param sp \a 1 (default value) means that the parameter \a S is internally computed.
         *          \a 0 means that the parameter \a S is provided by the user.
         */
        LogPolar_Adjacent(int w, int h, Point2i center, int R=70, double ro0=3.0, double smin=0.25, int full=1, int S=117, int sp=1);
        /**
         *Transformation from Cartesian image to cortical (log-polar) image.
         *\param source the Cartesian image
         *\return the transformed image (cortical image)
         */
        const Mat to_cortical(const Mat &source);
        /**
         *Transformation from cortical image to retinal (inverse log-polar) image.
         *\param source the cortical image
         *\return the transformed image (retinal image)
         */
        const Mat to_cartesian(const Mat &source);
        /**
         *Destructor
         */
        ~LogPolar_Adjacent();

    protected:
        struct pixel
        {
            pixel() { u = v = 0; a = 0.; }
            int u;
            int v;
            double a;
        };
        int S, R, M, N;
        int top, bottom,left,right;
        double ro0, romax, a, q;
        vector<vector<pixel> > L;
        vector<double> A;

        void subdivide_recursively(double x, double y, int i, int j, double length, double smin);
        bool get_uv(double x, double y, int&u, int&v);
        void create_map(int M, int N, int R, int S, double ro0, double smin);
    };

    CV_EXPORTS Mat subspaceProject(InputArray W, InputArray mean, InputArray src);
    CV_EXPORTS Mat subspaceReconstruct(InputArray W, InputArray mean, InputArray src);

    class CV_EXPORTS LDA
    {
    public:
        // Initializes a LDA with num_components (default 0).
        LDA(int num_components = 0) :
            _num_components(num_components) {};

        // Initializes and performs a Discriminant Analysis with Fisher's
        // Optimization Criterion on given data in src and corresponding labels
        // in labels. If 0 (or less) number of components are given, they are
        // automatically determined for given data in computation.
        LDA(const Mat& src, vector<int> labels,
                int num_components = 0) :
                    _num_components(num_components)
        {
            this->compute(src, labels); //! compute eigenvectors and eigenvalues
        }

        // Initializes and performs a Discriminant Analysis with Fisher's
        // Optimization Criterion on given data in src and corresponding labels
        // in labels. If 0 (or less) number of components are given, they are
        // automatically determined for given data in computation.
        LDA(InputArrayOfArrays src, InputArray labels,
                int num_components = 0) :
                    _num_components(num_components)
        {
            this->compute(src, labels); //! compute eigenvectors and eigenvalues
        }

        // Serializes this object to a given filename.
        void save(const string& filename) const;

        // Deserializes this object from a given filename.
        void load(const string& filename);

        // Serializes this object to a given cv::FileStorage.
        void save(FileStorage& fs) const;

            // Deserializes this object from a given cv::FileStorage.
        void load(const FileStorage& node);

        // Destructor.
        ~LDA() {}

        /** Compute the discriminants for data in src (row aligned) and labels.
          */
        void compute(InputArrayOfArrays src, InputArray labels);

        /** Projects samples into the LDA subspace.
            src may be one or more row aligned samples.
          */
        Mat project(InputArray src);

        /** Reconstructs projections from the LDA subspace.
            src may be one or more row aligned projections.
          */
        Mat reconstruct(InputArray src);

        // Returns the eigenvectors of this LDA.
        Mat eigenvectors() const { return _eigenvectors; };

        // Returns the eigenvalues of this LDA.
        Mat eigenvalues() const { return _eigenvalues; }

    protected:
        bool _dataAsRow; // unused, but needed for ABI compatibility.
        int _num_components;
        Mat _eigenvectors;
        Mat _eigenvalues;

        void lda(InputArrayOfArrays src, InputArray labels);
    };

    class CV_EXPORTS_W FaceRecognizer : public Algorithm
    {
    public:
        //! virtual destructor
        virtual ~FaceRecognizer() {}

        // Trains a FaceRecognizer.
        CV_WRAP virtual void train(InputArrayOfArrays src, InputArray labels) = 0;

        // Updates a FaceRecognizer.
        CV_WRAP void update(InputArrayOfArrays src, InputArray labels);

        // Gets a prediction from a FaceRecognizer.
        virtual int predict(InputArray src) const = 0;

        // Predicts the label and confidence for a given sample.
        CV_WRAP virtual void predict(InputArray src, CV_OUT int &label, CV_OUT double &confidence) const = 0;

        // Serializes this object to a given filename.
        CV_WRAP virtual void save(const string& filename) const;

        // Deserializes this object from a given filename.
        CV_WRAP virtual void load(const string& filename);

        // Serializes this object to a given cv::FileStorage.
        virtual void save(FileStorage& fs) const = 0;

        // Deserializes this object from a given cv::FileStorage.
        virtual void load(const FileStorage& fs) = 0;

        // Sets additional information as pairs label - info.
        void setLabelsInfo(const std::map<int, string>& labelsInfo);

        // Gets string information by label
        string getLabelInfo(const int &label);

        // Gets labels by string
        vector<int> getLabelsByString(const string& str);
    };

    CV_EXPORTS_W Ptr<FaceRecognizer> createEigenFaceRecognizer(int num_components = 0, double threshold = DBL_MAX);
    CV_EXPORTS_W Ptr<FaceRecognizer> createFisherFaceRecognizer(int num_components = 0, double threshold = DBL_MAX);
    CV_EXPORTS_W Ptr<FaceRecognizer> createLBPHFaceRecognizer(int radius=1, int neighbors=8,
                                                            int grid_x=8, int grid_y=8, double threshold = DBL_MAX);

    enum
    {
        COLORMAP_AUTUMN = 0,
        COLORMAP_BONE = 1,
        COLORMAP_JET = 2,
        COLORMAP_WINTER = 3,
        COLORMAP_RAINBOW = 4,
        COLORMAP_OCEAN = 5,
        COLORMAP_SUMMER = 6,
        COLORMAP_SPRING = 7,
        COLORMAP_COOL = 8,
        COLORMAP_HSV = 9,
        COLORMAP_PINK = 10,
        COLORMAP_HOT = 11
    };

    CV_EXPORTS_W void applyColorMap(InputArray src, OutputArray dst, int colormap);

    CV_EXPORTS bool initModule_contrib();
}

#include "opencv2/contrib/retina.hpp"

#include "opencv2/contrib/openfabmap.hpp"

#endif

#endif