summaryrefslogtreecommitdiff
path: root/2.3-1/thirdparty/includes/OpenCV/opencv2/video/background_segm.hpp
blob: d2d068c60fcc0d89acccade75ef0790e4c0f90c4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_BACKGROUND_SEGM_HPP__
#define __OPENCV_BACKGROUND_SEGM_HPP__

#include "opencv2/core/core.hpp"
#include <list>
namespace cv
{

/*!
 The Base Class for Background/Foreground Segmentation

 The class is only used to define the common interface for
 the whole family of background/foreground segmentation algorithms.
*/
class CV_EXPORTS_W BackgroundSubtractor : public Algorithm
{
public:
    //! the virtual destructor
    virtual ~BackgroundSubtractor();
    //! the update operator that takes the next video frame and returns the current foreground mask as 8-bit binary image.
    CV_WRAP_AS(apply) virtual void operator()(InputArray image, OutputArray fgmask,
                                              double learningRate=0);

    //! computes a background image
    virtual void getBackgroundImage(OutputArray backgroundImage) const;
};


/*!
 Gaussian Mixture-based Backbround/Foreground Segmentation Algorithm

 The class implements the following algorithm:
 "An improved adaptive background mixture model for real-time tracking with shadow detection"
 P. KadewTraKuPong and R. Bowden,
 Proc. 2nd European Workshp on Advanced Video-Based Surveillance Systems, 2001."
 http://personal.ee.surrey.ac.uk/Personal/R.Bowden/publications/avbs01/avbs01.pdf

*/
class CV_EXPORTS_W BackgroundSubtractorMOG : public BackgroundSubtractor
{
public:
    //! the default constructor
    CV_WRAP BackgroundSubtractorMOG();
    //! the full constructor that takes the length of the history, the number of gaussian mixtures, the background ratio parameter and the noise strength
    CV_WRAP BackgroundSubtractorMOG(int history, int nmixtures, double backgroundRatio, double noiseSigma=0);
    //! the destructor
    virtual ~BackgroundSubtractorMOG();
    //! the update operator
    virtual void operator()(InputArray image, OutputArray fgmask, double learningRate=0);

    //! re-initiaization method
    virtual void initialize(Size frameSize, int frameType);

    virtual AlgorithmInfo* info() const;

protected:
    Size frameSize;
    int frameType;
    Mat bgmodel;
    int nframes;
    int history;
    int nmixtures;
    double varThreshold;
    double backgroundRatio;
    double noiseSigma;
};


/*!
 The class implements the following algorithm:
 "Improved adaptive Gausian mixture model for background subtraction"
 Z.Zivkovic
 International Conference Pattern Recognition, UK, August, 2004.
 http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf
*/
class CV_EXPORTS_W BackgroundSubtractorMOG2 : public BackgroundSubtractor
{
public:
    //! the default constructor
    CV_WRAP BackgroundSubtractorMOG2();
    //! the full constructor that takes the length of the history, the number of gaussian mixtures, the background ratio parameter and the noise strength
    CV_WRAP BackgroundSubtractorMOG2(int history,  float varThreshold, bool bShadowDetection=true);
    //! the destructor
    virtual ~BackgroundSubtractorMOG2();
    //! the update operator
    virtual void operator()(InputArray image, OutputArray fgmask, double learningRate=-1);

    //! computes a background image which are the mean of all background gaussians
    virtual void getBackgroundImage(OutputArray backgroundImage) const;

    //! re-initiaization method
    virtual void initialize(Size frameSize, int frameType);

    virtual AlgorithmInfo* info() const;

protected:
    Size frameSize;
    int frameType;
    Mat bgmodel;
    Mat bgmodelUsedModes;//keep track of number of modes per pixel
    int nframes;
    int history;
    int nmixtures;
    //! here it is the maximum allowed number of mixture components.
    //! Actual number is determined dynamically per pixel
    double varThreshold;
    // threshold on the squared Mahalanobis distance to decide if it is well described
    // by the background model or not. Related to Cthr from the paper.
    // This does not influence the update of the background. A typical value could be 4 sigma
    // and that is varThreshold=4*4=16; Corresponds to Tb in the paper.

    /////////////////////////
    // less important parameters - things you might change but be carefull
    ////////////////////////
    float backgroundRatio;
    // corresponds to fTB=1-cf from the paper
    // TB - threshold when the component becomes significant enough to be included into
    // the background model. It is the TB=1-cf from the paper. So I use cf=0.1 => TB=0.
    // For alpha=0.001 it means that the mode should exist for approximately 105 frames before
    // it is considered foreground
    // float noiseSigma;
    float varThresholdGen;
    //correspondts to Tg - threshold on the squared Mahalan. dist. to decide
    //when a sample is close to the existing components. If it is not close
    //to any a new component will be generated. I use 3 sigma => Tg=3*3=9.
    //Smaller Tg leads to more generated components and higher Tg might make
    //lead to small number of components but they can grow too large
    float fVarInit;
    float fVarMin;
    float fVarMax;
    //initial variance  for the newly generated components.
    //It will will influence the speed of adaptation. A good guess should be made.
    //A simple way is to estimate the typical standard deviation from the images.
    //I used here 10 as a reasonable value
    // min and max can be used to further control the variance
    float fCT;//CT - complexity reduction prior
    //this is related to the number of samples needed to accept that a component
    //actually exists. We use CT=0.05 of all the samples. By setting CT=0 you get
    //the standard Stauffer&Grimson algorithm (maybe not exact but very similar)

    //shadow detection parameters
    bool bShadowDetection;//default 1 - do shadow detection
    unsigned char nShadowDetection;//do shadow detection - insert this value as the detection result - 127 default value
    float fTau;
    // Tau - shadow threshold. The shadow is detected if the pixel is darker
    //version of the background. Tau is a threshold on how much darker the shadow can be.
    //Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow
    //See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.
};

/**
 * Background Subtractor module. Takes a series of images and returns a sequence of mask (8UC1)
 * images of the same size, where 255 indicates Foreground and 0 represents Background.
 * This class implements an algorithm described in "Visual Tracking of Human Visitors under
 * Variable-Lighting Conditions for a Responsive Audio Art Installation," A. Godbehere,
 * A. Matsukawa, K. Goldberg, American Control Conference, Montreal, June 2012.
 */
class CV_EXPORTS BackgroundSubtractorGMG: public cv::BackgroundSubtractor
{
public:
    BackgroundSubtractorGMG();
    virtual ~BackgroundSubtractorGMG();
    virtual AlgorithmInfo* info() const;

    /**
     * Validate parameters and set up data structures for appropriate image size.
     * Must call before running on data.
     * @param frameSize input frame size
     * @param min       minimum value taken on by pixels in image sequence. Usually 0
     * @param max       maximum value taken on by pixels in image sequence. e.g. 1.0 or 255
     */
    void initialize(cv::Size frameSize, double min, double max);

    /**
     * Performs single-frame background subtraction and builds up a statistical background image
     * model.
     * @param image Input image
     * @param fgmask Output mask image representing foreground and background pixels
     * @param learningRate Determines how quickly features are "forgotten" from histograms
     */
    virtual void operator()(InputArray image, OutputArray fgmask, double learningRate=-1.0);

    /**
     * Releases all inner buffers.
     */
    void release();

    //! Total number of distinct colors to maintain in histogram.
    int     maxFeatures;
    //! Set between 0.0 and 1.0, determines how quickly features are "forgotten" from histograms.
    double  learningRate;
    //! Number of frames of video to use to initialize histograms.
    int     numInitializationFrames;
    //! Number of discrete levels in each channel to be used in histograms.
    int     quantizationLevels;
    //! Prior probability that any given pixel is a background pixel. A sensitivity parameter.
    double  backgroundPrior;
    //! Value above which pixel is determined to be FG.
    double  decisionThreshold;
    //! Smoothing radius, in pixels, for cleaning up FG image.
    int     smoothingRadius;
    //! Perform background model update
    bool updateBackgroundModel;

private:
    double maxVal_;
    double minVal_;

    cv::Size frameSize_;
    int frameNum_;

    cv::Mat_<int> nfeatures_;
    cv::Mat_<unsigned int> colors_;
    cv::Mat_<float> weights_;

    cv::Mat buf_;
};

}

#endif