summaryrefslogtreecommitdiff
path: root/2.3-1/thirdparty/includes/OpenCV/opencv2/flann/kmeans_index.h
blob: e119ceb291b81662a4bd7ee39f2ac476a29d9b36 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
/***********************************************************************
 * Software License Agreement (BSD License)
 *
 * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
 * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
 *
 * THE BSD LICENSE
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *************************************************************************/

#ifndef OPENCV_FLANN_KMEANS_INDEX_H_
#define OPENCV_FLANN_KMEANS_INDEX_H_

#include <algorithm>
#include <string>
#include <map>
#include <cassert>
#include <limits>
#include <cmath>

#include "general.h"
#include "nn_index.h"
#include "dist.h"
#include "matrix.h"
#include "result_set.h"
#include "heap.h"
#include "allocator.h"
#include "random.h"
#include "saving.h"
#include "logger.h"


namespace cvflann
{

struct KMeansIndexParams : public IndexParams
{
    KMeansIndexParams(int branching = 32, int iterations = 11,
                      flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM, float cb_index = 0.2 )
    {
        (*this)["algorithm"] = FLANN_INDEX_KMEANS;
        // branching factor
        (*this)["branching"] = branching;
        // max iterations to perform in one kmeans clustering (kmeans tree)
        (*this)["iterations"] = iterations;
        // algorithm used for picking the initial cluster centers for kmeans tree
        (*this)["centers_init"] = centers_init;
        // cluster boundary index. Used when searching the kmeans tree
        (*this)["cb_index"] = cb_index;
    }
};


/**
 * Hierarchical kmeans index
 *
 * Contains a tree constructed through a hierarchical kmeans clustering
 * and other information for indexing a set of points for nearest-neighbour matching.
 */
template <typename Distance>
class KMeansIndex : public NNIndex<Distance>
{
public:
    typedef typename Distance::ElementType ElementType;
    typedef typename Distance::ResultType DistanceType;



    typedef void (KMeansIndex::* centersAlgFunction)(int, int*, int, int*, int&);

    /**
     * The function used for choosing the cluster centers.
     */
    centersAlgFunction chooseCenters;



    /**
     * Chooses the initial centers in the k-means clustering in a random manner.
     *
     * Params:
     *     k = number of centers
     *     vecs = the dataset of points
     *     indices = indices in the dataset
     *     indices_length = length of indices vector
     *
     */
    void chooseCentersRandom(int k, int* indices, int indices_length, int* centers, int& centers_length)
    {
        UniqueRandom r(indices_length);

        int index;
        for (index=0; index<k; ++index) {
            bool duplicate = true;
            int rnd;
            while (duplicate) {
                duplicate = false;
                rnd = r.next();
                if (rnd<0) {
                    centers_length = index;
                    return;
                }

                centers[index] = indices[rnd];

                for (int j=0; j<index; ++j) {
                    DistanceType sq = distance_(dataset_[centers[index]], dataset_[centers[j]], dataset_.cols);
                    if (sq<1e-16) {
                        duplicate = true;
                    }
                }
            }
        }

        centers_length = index;
    }


    /**
     * Chooses the initial centers in the k-means using Gonzales' algorithm
     * so that the centers are spaced apart from each other.
     *
     * Params:
     *     k = number of centers
     *     vecs = the dataset of points
     *     indices = indices in the dataset
     * Returns:
     */
    void chooseCentersGonzales(int k, int* indices, int indices_length, int* centers, int& centers_length)
    {
        int n = indices_length;

        int rnd = rand_int(n);
        assert(rnd >=0 && rnd < n);

        centers[0] = indices[rnd];

        int index;
        for (index=1; index<k; ++index) {

            int best_index = -1;
            DistanceType best_val = 0;
            for (int j=0; j<n; ++j) {
                DistanceType dist = distance_(dataset_[centers[0]],dataset_[indices[j]],dataset_.cols);
                for (int i=1; i<index; ++i) {
                    DistanceType tmp_dist = distance_(dataset_[centers[i]],dataset_[indices[j]],dataset_.cols);
                    if (tmp_dist<dist) {
                        dist = tmp_dist;
                    }
                }
                if (dist>best_val) {
                    best_val = dist;
                    best_index = j;
                }
            }
            if (best_index!=-1) {
                centers[index] = indices[best_index];
            }
            else {
                break;
            }
        }
        centers_length = index;
    }


    /**
     * Chooses the initial centers in the k-means using the algorithm
     * proposed in the KMeans++ paper:
     * Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding
     *
     * Implementation of this function was converted from the one provided in Arthur's code.
     *
     * Params:
     *     k = number of centers
     *     vecs = the dataset of points
     *     indices = indices in the dataset
     * Returns:
     */
    void chooseCentersKMeanspp(int k, int* indices, int indices_length, int* centers, int& centers_length)
    {
        int n = indices_length;

        double currentPot = 0;
        DistanceType* closestDistSq = new DistanceType[n];

        // Choose one random center and set the closestDistSq values
        int index = rand_int(n);
        assert(index >=0 && index < n);
        centers[0] = indices[index];

        for (int i = 0; i < n; i++) {
            closestDistSq[i] = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols);
            closestDistSq[i] = ensureSquareDistance<Distance>( closestDistSq[i] );
            currentPot += closestDistSq[i];
        }


        const int numLocalTries = 1;

        // Choose each center
        int centerCount;
        for (centerCount = 1; centerCount < k; centerCount++) {

            // Repeat several trials
            double bestNewPot = -1;
            int bestNewIndex = -1;
            for (int localTrial = 0; localTrial < numLocalTries; localTrial++) {

                // Choose our center - have to be slightly careful to return a valid answer even accounting
                // for possible rounding errors
                double randVal = rand_double(currentPot);
                for (index = 0; index < n-1; index++) {
                    if (randVal <= closestDistSq[index]) break;
                    else randVal -= closestDistSq[index];
                }

                // Compute the new potential
                double newPot = 0;
                for (int i = 0; i < n; i++) {
                    DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols);
                    newPot += std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
                }

                // Store the best result
                if ((bestNewPot < 0)||(newPot < bestNewPot)) {
                    bestNewPot = newPot;
                    bestNewIndex = index;
                }
            }

            // Add the appropriate center
            centers[centerCount] = indices[bestNewIndex];
            currentPot = bestNewPot;
            for (int i = 0; i < n; i++) {
                DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[bestNewIndex]], dataset_.cols);
                closestDistSq[i] = std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
            }
        }

        centers_length = centerCount;

        delete[] closestDistSq;
    }



public:

    flann_algorithm_t getType() const
    {
        return FLANN_INDEX_KMEANS;
    }

    /**
     * Index constructor
     *
     * Params:
     *          inputData = dataset with the input features
     *          params = parameters passed to the hierarchical k-means algorithm
     */
    KMeansIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KMeansIndexParams(),
                Distance d = Distance())
        : dataset_(inputData), index_params_(params), root_(NULL), indices_(NULL), distance_(d)
    {
        memoryCounter_ = 0;

        size_ = dataset_.rows;
        veclen_ = dataset_.cols;

        branching_ = get_param(params,"branching",32);
        iterations_ = get_param(params,"iterations",11);
        if (iterations_<0) {
            iterations_ = (std::numeric_limits<int>::max)();
        }
        centers_init_  = get_param(params,"centers_init",FLANN_CENTERS_RANDOM);

        if (centers_init_==FLANN_CENTERS_RANDOM) {
            chooseCenters = &KMeansIndex::chooseCentersRandom;
        }
        else if (centers_init_==FLANN_CENTERS_GONZALES) {
            chooseCenters = &KMeansIndex::chooseCentersGonzales;
        }
        else if (centers_init_==FLANN_CENTERS_KMEANSPP) {
            chooseCenters = &KMeansIndex::chooseCentersKMeanspp;
        }
        else {
            throw FLANNException("Unknown algorithm for choosing initial centers.");
        }
        cb_index_ = 0.4f;

    }


    KMeansIndex(const KMeansIndex&);
    KMeansIndex& operator=(const KMeansIndex&);


    /**
     * Index destructor.
     *
     * Release the memory used by the index.
     */
    virtual ~KMeansIndex()
    {
        if (root_ != NULL) {
            free_centers(root_);
        }
        if (indices_!=NULL) {
            delete[] indices_;
        }
    }

    /**
     *  Returns size of index.
     */
    size_t size() const
    {
        return size_;
    }

    /**
     * Returns the length of an index feature.
     */
    size_t veclen() const
    {
        return veclen_;
    }


    void set_cb_index( float index)
    {
        cb_index_ = index;
    }

    /**
     * Computes the inde memory usage
     * Returns: memory used by the index
     */
    int usedMemory() const
    {
        return pool_.usedMemory+pool_.wastedMemory+memoryCounter_;
    }

    /**
     * Dummy implementation for other algorithms of addable indexes after that.
     */
    void addIndex(const Matrix<ElementType>& /*wholeData*/, const Matrix<ElementType>& /*additionalData*/)
    {
    }

    /**
     * Builds the index
     */
    void buildIndex()
    {
        if (branching_<2) {
            throw FLANNException("Branching factor must be at least 2");
        }

        indices_ = new int[size_];
        for (size_t i=0; i<size_; ++i) {
            indices_[i] = int(i);
        }

        root_ = pool_.allocate<KMeansNode>();
        std::memset(root_, 0, sizeof(KMeansNode));

        computeNodeStatistics(root_, indices_, (int)size_);
        computeClustering(root_, indices_, (int)size_, branching_,0);
    }


    void saveIndex(FILE* stream)
    {
        save_value(stream, branching_);
        save_value(stream, iterations_);
        save_value(stream, memoryCounter_);
        save_value(stream, cb_index_);
        save_value(stream, *indices_, (int)size_);

        save_tree(stream, root_);
    }


    void loadIndex(FILE* stream)
    {
        load_value(stream, branching_);
        load_value(stream, iterations_);
        load_value(stream, memoryCounter_);
        load_value(stream, cb_index_);
        if (indices_!=NULL) {
            delete[] indices_;
        }
        indices_ = new int[size_];
        load_value(stream, *indices_, size_);

        if (root_!=NULL) {
            free_centers(root_);
        }
        load_tree(stream, root_);

        index_params_["algorithm"] = getType();
        index_params_["branching"] = branching_;
        index_params_["iterations"] = iterations_;
        index_params_["centers_init"] = centers_init_;
        index_params_["cb_index"] = cb_index_;

    }


    /**
     * Find set of nearest neighbors to vec. Their indices are stored inside
     * the result object.
     *
     * Params:
     *     result = the result object in which the indices of the nearest-neighbors are stored
     *     vec = the vector for which to search the nearest neighbors
     *     searchParams = parameters that influence the search algorithm (checks, cb_index)
     */
    void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
    {

        int maxChecks = get_param(searchParams,"checks",32);

        if (maxChecks==FLANN_CHECKS_UNLIMITED) {
            findExactNN(root_, result, vec);
        }
        else {
            // Priority queue storing intermediate branches in the best-bin-first search
            Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_);

            int checks = 0;
            findNN(root_, result, vec, checks, maxChecks, heap);

            BranchSt branch;
            while (heap->popMin(branch) && (checks<maxChecks || !result.full())) {
                KMeansNodePtr node = branch.node;
                findNN(node, result, vec, checks, maxChecks, heap);
            }
            assert(result.full());

            delete heap;
        }

    }

    /**
     * Clustering function that takes a cut in the hierarchical k-means
     * tree and return the clusters centers of that clustering.
     * Params:
     *     numClusters = number of clusters to have in the clustering computed
     * Returns: number of cluster centers
     */
    int getClusterCenters(Matrix<DistanceType>& centers)
    {
        int numClusters = centers.rows;
        if (numClusters<1) {
            throw FLANNException("Number of clusters must be at least 1");
        }

        DistanceType variance;
        KMeansNodePtr* clusters = new KMeansNodePtr[numClusters];

        int clusterCount = getMinVarianceClusters(root_, clusters, numClusters, variance);

        Logger::info("Clusters requested: %d, returning %d\n",numClusters, clusterCount);

        for (int i=0; i<clusterCount; ++i) {
            DistanceType* center = clusters[i]->pivot;
            for (size_t j=0; j<veclen_; ++j) {
                centers[i][j] = center[j];
            }
        }
        delete[] clusters;

        return clusterCount;
    }

    IndexParams getParameters() const
    {
        return index_params_;
    }


private:
    /**
     * Struture representing a node in the hierarchical k-means tree.
     */
    struct KMeansNode
    {
        /**
         * The cluster center.
         */
        DistanceType* pivot;
        /**
         * The cluster radius.
         */
        DistanceType radius;
        /**
         * The cluster mean radius.
         */
        DistanceType mean_radius;
        /**
         * The cluster variance.
         */
        DistanceType variance;
        /**
         * The cluster size (number of points in the cluster)
         */
        int size;
        /**
         * Child nodes (only for non-terminal nodes)
         */
        KMeansNode** childs;
        /**
         * Node points (only for terminal nodes)
         */
        int* indices;
        /**
         * Level
         */
        int level;
    };
    typedef KMeansNode* KMeansNodePtr;

    /**
     * Alias definition for a nicer syntax.
     */
    typedef BranchStruct<KMeansNodePtr, DistanceType> BranchSt;




    void save_tree(FILE* stream, KMeansNodePtr node)
    {
        save_value(stream, *node);
        save_value(stream, *(node->pivot), (int)veclen_);
        if (node->childs==NULL) {
            int indices_offset = (int)(node->indices - indices_);
            save_value(stream, indices_offset);
        }
        else {
            for(int i=0; i<branching_; ++i) {
                save_tree(stream, node->childs[i]);
            }
        }
    }


    void load_tree(FILE* stream, KMeansNodePtr& node)
    {
        node = pool_.allocate<KMeansNode>();
        load_value(stream, *node);
        node->pivot = new DistanceType[veclen_];
        load_value(stream, *(node->pivot), (int)veclen_);
        if (node->childs==NULL) {
            int indices_offset;
            load_value(stream, indices_offset);
            node->indices = indices_ + indices_offset;
        }
        else {
            node->childs = pool_.allocate<KMeansNodePtr>(branching_);
            for(int i=0; i<branching_; ++i) {
                load_tree(stream, node->childs[i]);
            }
        }
    }


    /**
     * Helper function
     */
    void free_centers(KMeansNodePtr node)
    {
        delete[] node->pivot;
        if (node->childs!=NULL) {
            for (int k=0; k<branching_; ++k) {
                free_centers(node->childs[k]);
            }
        }
    }

    /**
     * Computes the statistics of a node (mean, radius, variance).
     *
     * Params:
     *     node = the node to use
     *     indices = the indices of the points belonging to the node
     */
    void computeNodeStatistics(KMeansNodePtr node, int* indices, int indices_length)
    {

        DistanceType radius = 0;
        DistanceType variance = 0;
        DistanceType* mean = new DistanceType[veclen_];
        memoryCounter_ += int(veclen_*sizeof(DistanceType));

        memset(mean,0,veclen_*sizeof(DistanceType));

        for (size_t i=0; i<size_; ++i) {
            ElementType* vec = dataset_[indices[i]];
            for (size_t j=0; j<veclen_; ++j) {
                mean[j] += vec[j];
            }
            variance += distance_(vec, ZeroIterator<ElementType>(), veclen_);
        }
        for (size_t j=0; j<veclen_; ++j) {
            mean[j] /= size_;
        }
        variance /= size_;
        variance -= distance_(mean, ZeroIterator<ElementType>(), veclen_);

        DistanceType tmp = 0;
        for (int i=0; i<indices_length; ++i) {
            tmp = distance_(mean, dataset_[indices[i]], veclen_);
            if (tmp>radius) {
                radius = tmp;
            }
        }

        node->variance = variance;
        node->radius = radius;
        node->pivot = mean;
    }


    /**
     * The method responsible with actually doing the recursive hierarchical
     * clustering
     *
     * Params:
     *     node = the node to cluster
     *     indices = indices of the points belonging to the current node
     *     branching = the branching factor to use in the clustering
     *
     * TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point)
     */
    void computeClustering(KMeansNodePtr node, int* indices, int indices_length, int branching, int level)
    {
        node->size = indices_length;
        node->level = level;

        if (indices_length < branching) {
            node->indices = indices;
            std::sort(node->indices,node->indices+indices_length);
            node->childs = NULL;
            return;
        }

        int* centers_idx = new int[branching];
        int centers_length;
        (this->*chooseCenters)(branching, indices, indices_length, centers_idx, centers_length);

        if (centers_length<branching) {
            node->indices = indices;
            std::sort(node->indices,node->indices+indices_length);
            node->childs = NULL;
            delete [] centers_idx;
            return;
        }


        Matrix<double> dcenters(new double[branching*veclen_],branching,veclen_);
        for (int i=0; i<centers_length; ++i) {
            ElementType* vec = dataset_[centers_idx[i]];
            for (size_t k=0; k<veclen_; ++k) {
                dcenters[i][k] = double(vec[k]);
            }
        }
        delete[] centers_idx;

        std::vector<DistanceType> radiuses(branching);
        int* count = new int[branching];
        for (int i=0; i<branching; ++i) {
            radiuses[i] = 0;
            count[i] = 0;
        }

        //	assign points to clusters
        int* belongs_to = new int[indices_length];
        for (int i=0; i<indices_length; ++i) {

            DistanceType sq_dist = distance_(dataset_[indices[i]], dcenters[0], veclen_);
            belongs_to[i] = 0;
            for (int j=1; j<branching; ++j) {
                DistanceType new_sq_dist = distance_(dataset_[indices[i]], dcenters[j], veclen_);
                if (sq_dist>new_sq_dist) {
                    belongs_to[i] = j;
                    sq_dist = new_sq_dist;
                }
            }
            if (sq_dist>radiuses[belongs_to[i]]) {
                radiuses[belongs_to[i]] = sq_dist;
            }
            count[belongs_to[i]]++;
        }

        bool converged = false;
        int iteration = 0;
        while (!converged && iteration<iterations_) {
            converged = true;
            iteration++;

            // compute the new cluster centers
            for (int i=0; i<branching; ++i) {
                memset(dcenters[i],0,sizeof(double)*veclen_);
                radiuses[i] = 0;
            }
            for (int i=0; i<indices_length; ++i) {
                ElementType* vec = dataset_[indices[i]];
                double* center = dcenters[belongs_to[i]];
                for (size_t k=0; k<veclen_; ++k) {
                    center[k] += vec[k];
                }
            }
            for (int i=0; i<branching; ++i) {
                int cnt = count[i];
                for (size_t k=0; k<veclen_; ++k) {
                    dcenters[i][k] /= cnt;
                }
            }

            // reassign points to clusters
            for (int i=0; i<indices_length; ++i) {
                DistanceType sq_dist = distance_(dataset_[indices[i]], dcenters[0], veclen_);
                int new_centroid = 0;
                for (int j=1; j<branching; ++j) {
                    DistanceType new_sq_dist = distance_(dataset_[indices[i]], dcenters[j], veclen_);
                    if (sq_dist>new_sq_dist) {
                        new_centroid = j;
                        sq_dist = new_sq_dist;
                    }
                }
                if (sq_dist>radiuses[new_centroid]) {
                    radiuses[new_centroid] = sq_dist;
                }
                if (new_centroid != belongs_to[i]) {
                    count[belongs_to[i]]--;
                    count[new_centroid]++;
                    belongs_to[i] = new_centroid;

                    converged = false;
                }
            }

            for (int i=0; i<branching; ++i) {
                // if one cluster converges to an empty cluster,
                // move an element into that cluster
                if (count[i]==0) {
                    int j = (i+1)%branching;
                    while (count[j]<=1) {
                        j = (j+1)%branching;
                    }

                    for (int k=0; k<indices_length; ++k) {
                        if (belongs_to[k]==j) {
                            // for cluster j, we move the furthest element from the center to the empty cluster i
                            if ( distance_(dataset_[indices[k]], dcenters[j], veclen_) == radiuses[j] ) {
                                belongs_to[k] = i;
                                count[j]--;
                                count[i]++;
                                break;
                            }
                        }
                    }
                    converged = false;
                }
            }

        }

        DistanceType** centers = new DistanceType*[branching];

        for (int i=0; i<branching; ++i) {
            centers[i] = new DistanceType[veclen_];
            memoryCounter_ += (int)(veclen_*sizeof(DistanceType));
            for (size_t k=0; k<veclen_; ++k) {
                centers[i][k] = (DistanceType)dcenters[i][k];
            }
        }


        // compute kmeans clustering for each of the resulting clusters
        node->childs = pool_.allocate<KMeansNodePtr>(branching);
        int start = 0;
        int end = start;
        for (int c=0; c<branching; ++c) {
            int s = count[c];

            DistanceType variance = 0;
            DistanceType mean_radius =0;
            for (int i=0; i<indices_length; ++i) {
                if (belongs_to[i]==c) {
                    DistanceType d = distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_);
                    variance += d;
                    mean_radius += sqrt(d);
                    std::swap(indices[i],indices[end]);
                    std::swap(belongs_to[i],belongs_to[end]);
                    end++;
                }
            }
            variance /= s;
            mean_radius /= s;
            variance -= distance_(centers[c], ZeroIterator<ElementType>(), veclen_);

            node->childs[c] = pool_.allocate<KMeansNode>();
            std::memset(node->childs[c], 0, sizeof(KMeansNode));
            node->childs[c]->radius = radiuses[c];
            node->childs[c]->pivot = centers[c];
            node->childs[c]->variance = variance;
            node->childs[c]->mean_radius = mean_radius;
            computeClustering(node->childs[c],indices+start, end-start, branching, level+1);
            start=end;
        }

        delete[] dcenters.data;
        delete[] centers;
        delete[] count;
        delete[] belongs_to;
    }



    /**
     * Performs one descent in the hierarchical k-means tree. The branches not
     * visited are stored in a priority queue.
     *
     * Params:
     *      node = node to explore
     *      result = container for the k-nearest neighbors found
     *      vec = query points
     *      checks = how many points in the dataset have been checked so far
     *      maxChecks = maximum dataset points to checks
     */


    void findNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks,
                Heap<BranchSt>* heap)
    {
        // Ignore those clusters that are too far away
        {
            DistanceType bsq = distance_(vec, node->pivot, veclen_);
            DistanceType rsq = node->radius;
            DistanceType wsq = result.worstDist();

            DistanceType val = bsq-rsq-wsq;
            DistanceType val2 = val*val-4*rsq*wsq;

            //if (val>0) {
            if ((val>0)&&(val2>0)) {
                return;
            }
        }

        if (node->childs==NULL) {
            if (checks>=maxChecks) {
                if (result.full()) return;
            }
            checks += node->size;
            for (int i=0; i<node->size; ++i) {
                int index = node->indices[i];
                DistanceType dist = distance_(dataset_[index], vec, veclen_);
                result.addPoint(dist, index);
            }
        }
        else {
            DistanceType* domain_distances = new DistanceType[branching_];
            int closest_center = exploreNodeBranches(node, vec, domain_distances, heap);
            delete[] domain_distances;
            findNN(node->childs[closest_center],result,vec, checks, maxChecks, heap);
        }
    }

    /**
     * Helper function that computes the nearest childs of a node to a given query point.
     * Params:
     *     node = the node
     *     q = the query point
     *     distances = array with the distances to each child node.
     * Returns:
     */
    int exploreNodeBranches(KMeansNodePtr node, const ElementType* q, DistanceType* domain_distances, Heap<BranchSt>* heap)
    {

        int best_index = 0;
        domain_distances[best_index] = distance_(q, node->childs[best_index]->pivot, veclen_);
        for (int i=1; i<branching_; ++i) {
            domain_distances[i] = distance_(q, node->childs[i]->pivot, veclen_);
            if (domain_distances[i]<domain_distances[best_index]) {
                best_index = i;
            }
        }

        //		float* best_center = node->childs[best_index]->pivot;
        for (int i=0; i<branching_; ++i) {
            if (i != best_index) {
                domain_distances[i] -= cb_index_*node->childs[i]->variance;

                //				float dist_to_border = getDistanceToBorder(node.childs[i].pivot,best_center,q);
                //				if (domain_distances[i]<dist_to_border) {
                //					domain_distances[i] = dist_to_border;
                //				}
                heap->insert(BranchSt(node->childs[i],domain_distances[i]));
            }
        }

        return best_index;
    }


    /**
     * Function the performs exact nearest neighbor search by traversing the entire tree.
     */
    void findExactNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec)
    {
        // Ignore those clusters that are too far away
        {
            DistanceType bsq = distance_(vec, node->pivot, veclen_);
            DistanceType rsq = node->radius;
            DistanceType wsq = result.worstDist();

            DistanceType val = bsq-rsq-wsq;
            DistanceType val2 = val*val-4*rsq*wsq;

            //                  if (val>0) {
            if ((val>0)&&(val2>0)) {
                return;
            }
        }


        if (node->childs==NULL) {
            for (int i=0; i<node->size; ++i) {
                int index = node->indices[i];
                DistanceType dist = distance_(dataset_[index], vec, veclen_);
                result.addPoint(dist, index);
            }
        }
        else {
            int* sort_indices = new int[branching_];

            getCenterOrdering(node, vec, sort_indices);

            for (int i=0; i<branching_; ++i) {
                findExactNN(node->childs[sort_indices[i]],result,vec);
            }

            delete[] sort_indices;
        }
    }


    /**
     * Helper function.
     *
     * I computes the order in which to traverse the child nodes of a particular node.
     */
    void getCenterOrdering(KMeansNodePtr node, const ElementType* q, int* sort_indices)
    {
        DistanceType* domain_distances = new DistanceType[branching_];
        for (int i=0; i<branching_; ++i) {
            DistanceType dist = distance_(q, node->childs[i]->pivot, veclen_);

            int j=0;
            while (domain_distances[j]<dist && j<i) j++;
            for (int k=i; k>j; --k) {
                domain_distances[k] = domain_distances[k-1];
                sort_indices[k] = sort_indices[k-1];
            }
            domain_distances[j] = dist;
            sort_indices[j] = i;
        }
        delete[] domain_distances;
    }

    /**
     * Method that computes the squared distance from the query point q
     * from inside region with center c to the border between this
     * region and the region with center p
     */
    DistanceType getDistanceToBorder(DistanceType* p, DistanceType* c, DistanceType* q)
    {
        DistanceType sum = 0;
        DistanceType sum2 = 0;

        for (int i=0; i<veclen_; ++i) {
            DistanceType t = c[i]-p[i];
            sum += t*(q[i]-(c[i]+p[i])/2);
            sum2 += t*t;
        }

        return sum*sum/sum2;
    }


    /**
     * Helper function the descends in the hierarchical k-means tree by spliting those clusters that minimize
     * the overall variance of the clustering.
     * Params:
     *     root = root node
     *     clusters = array with clusters centers (return value)
     *     varianceValue = variance of the clustering (return value)
     * Returns:
     */
    int getMinVarianceClusters(KMeansNodePtr root, KMeansNodePtr* clusters, int clusters_length, DistanceType& varianceValue)
    {
        int clusterCount = 1;
        clusters[0] = root;

        DistanceType meanVariance = root->variance*root->size;

        while (clusterCount<clusters_length) {
            DistanceType minVariance = (std::numeric_limits<DistanceType>::max)();
            int splitIndex = -1;

            for (int i=0; i<clusterCount; ++i) {
                if (clusters[i]->childs != NULL) {

                    DistanceType variance = meanVariance - clusters[i]->variance*clusters[i]->size;

                    for (int j=0; j<branching_; ++j) {
                        variance += clusters[i]->childs[j]->variance*clusters[i]->childs[j]->size;
                    }
                    if (variance<minVariance) {
                        minVariance = variance;
                        splitIndex = i;
                    }
                }
            }

            if (splitIndex==-1) break;
            if ( (branching_+clusterCount-1) > clusters_length) break;

            meanVariance = minVariance;

            // split node
            KMeansNodePtr toSplit = clusters[splitIndex];
            clusters[splitIndex] = toSplit->childs[0];
            for (int i=1; i<branching_; ++i) {
                clusters[clusterCount++] = toSplit->childs[i];
            }
        }

        varianceValue = meanVariance/root->size;
        return clusterCount;
    }

private:
    /** The branching factor used in the hierarchical k-means clustering */
    int branching_;

    /** Maximum number of iterations to use when performing k-means clustering */
    int iterations_;

    /** Algorithm for choosing the cluster centers */
    flann_centers_init_t centers_init_;

    /**
     * Cluster border index. This is used in the tree search phase when determining
     * the closest cluster to explore next. A zero value takes into account only
     * the cluster centres, a value greater then zero also take into account the size
     * of the cluster.
     */
    float cb_index_;

    /**
     * The dataset used by this index
     */
    const Matrix<ElementType> dataset_;

    /** Index parameters */
    IndexParams index_params_;

    /**
     * Number of features in the dataset.
     */
    size_t size_;

    /**
     * Length of each feature.
     */
    size_t veclen_;

    /**
     * The root node in the tree.
     */
    KMeansNodePtr root_;

    /**
     *  Array of indices to vectors in the dataset.
     */
    int* indices_;

    /**
     * The distance
     */
    Distance distance_;

    /**
     * Pooled memory allocator.
     */
    PooledAllocator pool_;

    /**
     * Memory occupied by the index.
     */
    int memoryCounter_;
};

}

#endif //OPENCV_FLANN_KMEANS_INDEX_H_