1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
|
/* specfunc/gsl_sf_fermi_dirac.h
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Author: G. Jungman */
#ifndef __GSL_SF_FERMI_DIRAC_H__
#define __GSL_SF_FERMI_DIRAC_H__
#include <gsl/gsl_sf_result.h>
#undef __BEGIN_DECLS
#undef __END_DECLS
#ifdef __cplusplus
# define __BEGIN_DECLS extern "C" {
# define __END_DECLS }
#else
# define __BEGIN_DECLS /* empty */
# define __END_DECLS /* empty */
#endif
__BEGIN_DECLS
/* Complete Fermi-Dirac Integrals:
*
* F_j(x) := 1/Gamma[j+1] Integral[ t^j /(Exp[t-x] + 1), {t,0,Infinity}]
*
*
* Incomplete Fermi-Dirac Integrals:
*
* F_j(x,b) := 1/Gamma[j+1] Integral[ t^j /(Exp[t-x] + 1), {t,b,Infinity}]
*/
/* Complete integral F_{-1}(x) = e^x / (1 + e^x)
*
* exceptions: GSL_EUNDRFLW
*/
int gsl_sf_fermi_dirac_m1_e(const double x, gsl_sf_result * result);
double gsl_sf_fermi_dirac_m1(const double x);
/* Complete integral F_0(x) = ln(1 + e^x)
*
* exceptions: GSL_EUNDRFLW
*/
int gsl_sf_fermi_dirac_0_e(const double x, gsl_sf_result * result);
double gsl_sf_fermi_dirac_0(const double x);
/* Complete integral F_1(x)
*
* exceptions: GSL_EUNDRFLW, GSL_EOVRFLW
*/
int gsl_sf_fermi_dirac_1_e(const double x, gsl_sf_result * result);
double gsl_sf_fermi_dirac_1(const double x);
/* Complete integral F_2(x)
*
* exceptions: GSL_EUNDRFLW, GSL_EOVRFLW
*/
int gsl_sf_fermi_dirac_2_e(const double x, gsl_sf_result * result);
double gsl_sf_fermi_dirac_2(const double x);
/* Complete integral F_j(x)
* for integer j
*
* exceptions: GSL_EUNDRFLW, GSL_EOVRFLW
*/
int gsl_sf_fermi_dirac_int_e(const int j, const double x, gsl_sf_result * result);
double gsl_sf_fermi_dirac_int(const int j, const double x);
/* Complete integral F_{-1/2}(x)
*
* exceptions: GSL_EUNDRFLW, GSL_EOVRFLW
*/
int gsl_sf_fermi_dirac_mhalf_e(const double x, gsl_sf_result * result);
double gsl_sf_fermi_dirac_mhalf(const double x);
/* Complete integral F_{1/2}(x)
*
* exceptions: GSL_EUNDRFLW, GSL_EOVRFLW
*/
int gsl_sf_fermi_dirac_half_e(const double x, gsl_sf_result * result);
double gsl_sf_fermi_dirac_half(const double x);
/* Complete integral F_{3/2}(x)
*
* exceptions: GSL_EUNDRFLW, GSL_EOVRFLW
*/
int gsl_sf_fermi_dirac_3half_e(const double x, gsl_sf_result * result);
double gsl_sf_fermi_dirac_3half(const double x);
/* Incomplete integral F_0(x,b) = ln(1 + e^(b-x)) - (b-x)
*
* exceptions: GSL_EUNDRFLW, GSL_EDOM
*/
int gsl_sf_fermi_dirac_inc_0_e(const double x, const double b, gsl_sf_result * result);
double gsl_sf_fermi_dirac_inc_0(const double x, const double b);
__END_DECLS
#endif /* __GSL_SF_FERMI_DIRAC_H__ */
|