summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/zunmr3.f
blob: 111c1c9571f7672cf8e91c5a7246ea185426c0aa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
      SUBROUTINE ZUNMR3( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
     $                   WORK, INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          SIDE, TRANS
      INTEGER            INFO, K, L, LDA, LDC, M, N
*     ..
*     .. Array Arguments ..
      COMPLEX*16         A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  ZUNMR3 overwrites the general complex m by n matrix C with
*
*        Q * C  if SIDE = 'L' and TRANS = 'N', or
*
*        Q'* C  if SIDE = 'L' and TRANS = 'C', or
*
*        C * Q  if SIDE = 'R' and TRANS = 'N', or
*
*        C * Q' if SIDE = 'R' and TRANS = 'C',
*
*  where Q is a complex unitary matrix defined as the product of k
*  elementary reflectors
*
*        Q = H(1) H(2) . . . H(k)
*
*  as returned by ZTZRZF. Q is of order m if SIDE = 'L' and of order n
*  if SIDE = 'R'.
*
*  Arguments
*  =========
*
*  SIDE    (input) CHARACTER*1
*          = 'L': apply Q or Q' from the Left
*          = 'R': apply Q or Q' from the Right
*
*  TRANS   (input) CHARACTER*1
*          = 'N': apply Q  (No transpose)
*          = 'C': apply Q' (Conjugate transpose)
*
*  M       (input) INTEGER
*          The number of rows of the matrix C. M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix C. N >= 0.
*
*  K       (input) INTEGER
*          The number of elementary reflectors whose product defines
*          the matrix Q.
*          If SIDE = 'L', M >= K >= 0;
*          if SIDE = 'R', N >= K >= 0.
*
*  L       (input) INTEGER
*          The number of columns of the matrix A containing
*          the meaningful part of the Householder reflectors.
*          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
*
*  A       (input) COMPLEX*16 array, dimension
*                               (LDA,M) if SIDE = 'L',
*                               (LDA,N) if SIDE = 'R'
*          The i-th row must contain the vector which defines the
*          elementary reflector H(i), for i = 1,2,...,k, as returned by
*          ZTZRZF in the last k rows of its array argument A.
*          A is modified by the routine but restored on exit.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A. LDA >= max(1,K).
*
*  TAU     (input) COMPLEX*16 array, dimension (K)
*          TAU(i) must contain the scalar factor of the elementary
*          reflector H(i), as returned by ZTZRZF.
*
*  C       (input/output) COMPLEX*16 array, dimension (LDC,N)
*          On entry, the m-by-n matrix C.
*          On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
*
*  LDC     (input) INTEGER
*          The leading dimension of the array C. LDC >= max(1,M).
*
*  WORK    (workspace) COMPLEX*16 array, dimension
*                                   (N) if SIDE = 'L',
*                                   (M) if SIDE = 'R'
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -i, the i-th argument had an illegal value
*
*  Further Details
*  ===============
*
*  Based on contributions by
*    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            LEFT, NOTRAN
      INTEGER            I, I1, I2, I3, IC, JA, JC, MI, NI, NQ
      COMPLEX*16         TAUI
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZLARZ
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DCONJG, MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      LEFT = LSAME( SIDE, 'L' )
      NOTRAN = LSAME( TRANS, 'N' )
*
*     NQ is the order of Q
*
      IF( LEFT ) THEN
         NQ = M
      ELSE
         NQ = N
      END IF
      IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
         INFO = -2
      ELSE IF( M.LT.0 ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
         INFO = -5
      ELSE IF( L.LT.0 .OR. ( LEFT .AND. ( L.GT.M ) ) .OR.
     $         ( .NOT.LEFT .AND. ( L.GT.N ) ) ) THEN
         INFO = -6
      ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
         INFO = -8
      ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
         INFO = -11
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZUNMR3', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 )
     $   RETURN
*
      IF( ( LEFT .AND. .NOT.NOTRAN .OR. .NOT.LEFT .AND. NOTRAN ) ) THEN
         I1 = 1
         I2 = K
         I3 = 1
      ELSE
         I1 = K
         I2 = 1
         I3 = -1
      END IF
*
      IF( LEFT ) THEN
         NI = N
         JA = M - L + 1
         JC = 1
      ELSE
         MI = M
         JA = N - L + 1
         IC = 1
      END IF
*
      DO 10 I = I1, I2, I3
         IF( LEFT ) THEN
*
*           H(i) or H(i)' is applied to C(i:m,1:n)
*
            MI = M - I + 1
            IC = I
         ELSE
*
*           H(i) or H(i)' is applied to C(1:m,i:n)
*
            NI = N - I + 1
            JC = I
         END IF
*
*        Apply H(i) or H(i)'
*
         IF( NOTRAN ) THEN
            TAUI = TAU( I )
         ELSE
            TAUI = DCONJG( TAU( I ) )
         END IF
         CALL ZLARZ( SIDE, MI, NI, L, A( I, JA ), LDA, TAUI,
     $               C( IC, JC ), LDC, WORK )
*
   10 CONTINUE
*
      RETURN
*
*     End of ZUNMR3
*
      END