summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/zungtr.f
blob: 5de7c10986b0b7be351531e2465d3e0ff8f9f4b5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
      SUBROUTINE ZUNGTR( UPLO, N, A, LDA, TAU, WORK, LWORK, INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDA, LWORK, N
*     ..
*     .. Array Arguments ..
      COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  ZUNGTR generates a complex unitary matrix Q which is defined as the
*  product of n-1 elementary reflectors of order N, as returned by
*  ZHETRD:
*
*  if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),
*
*  if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          = 'U': Upper triangle of A contains elementary reflectors
*                 from ZHETRD;
*          = 'L': Lower triangle of A contains elementary reflectors
*                 from ZHETRD.
*
*  N       (input) INTEGER
*          The order of the matrix Q. N >= 0.
*
*  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
*          On entry, the vectors which define the elementary reflectors,
*          as returned by ZHETRD.
*          On exit, the N-by-N unitary matrix Q.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A. LDA >= N.
*
*  TAU     (input) COMPLEX*16 array, dimension (N-1)
*          TAU(i) must contain the scalar factor of the elementary
*          reflector H(i), as returned by ZHETRD.
*
*  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK. LWORK >= N-1.
*          For optimum performance LWORK >= (N-1)*NB, where NB is
*          the optimal blocksize.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX*16         ZERO, ONE
      PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ),
     $                   ONE = ( 1.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY, UPPER
      INTEGER            I, IINFO, J, LWKOPT, NB
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      EXTERNAL           LSAME, ILAENV
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZUNGQL, ZUNGQR
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      LQUERY = ( LWORK.EQ.-1 )
      UPPER = LSAME( UPLO, 'U' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      ELSE IF( LWORK.LT.MAX( 1, N-1 ) .AND. .NOT.LQUERY ) THEN
         INFO = -7
      END IF
*
      IF( INFO.EQ.0 ) THEN
         IF( UPPER ) THEN
            NB = ILAENV( 1, 'ZUNGQL', ' ', N-1, N-1, N-1, -1 )
         ELSE
            NB = ILAENV( 1, 'ZUNGQR', ' ', N-1, N-1, N-1, -1 )
         END IF
         LWKOPT = MAX( 1, N-1 )*NB
         WORK( 1 ) = LWKOPT
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZUNGTR', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 ) THEN
         WORK( 1 ) = 1
         RETURN
      END IF
*
      IF( UPPER ) THEN
*
*        Q was determined by a call to ZHETRD with UPLO = 'U'
*
*        Shift the vectors which define the elementary reflectors one
*        column to the left, and set the last row and column of Q to
*        those of the unit matrix
*
         DO 20 J = 1, N - 1
            DO 10 I = 1, J - 1
               A( I, J ) = A( I, J+1 )
   10       CONTINUE
            A( N, J ) = ZERO
   20    CONTINUE
         DO 30 I = 1, N - 1
            A( I, N ) = ZERO
   30    CONTINUE
         A( N, N ) = ONE
*
*        Generate Q(1:n-1,1:n-1)
*
         CALL ZUNGQL( N-1, N-1, N-1, A, LDA, TAU, WORK, LWORK, IINFO )
*
      ELSE
*
*        Q was determined by a call to ZHETRD with UPLO = 'L'.
*
*        Shift the vectors which define the elementary reflectors one
*        column to the right, and set the first row and column of Q to
*        those of the unit matrix
*
         DO 50 J = N, 2, -1
            A( 1, J ) = ZERO
            DO 40 I = J + 1, N
               A( I, J ) = A( I, J-1 )
   40       CONTINUE
   50    CONTINUE
         A( 1, 1 ) = ONE
         DO 60 I = 2, N
            A( I, 1 ) = ZERO
   60    CONTINUE
         IF( N.GT.1 ) THEN
*
*           Generate Q(2:n,2:n)
*
            CALL ZUNGQR( N-1, N-1, N-1, A( 2, 2 ), LDA, TAU, WORK,
     $                   LWORK, IINFO )
         END IF
      END IF
      WORK( 1 ) = LWKOPT
      RETURN
*
*     End of ZUNGTR
*
      END