summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/zungqr.f
blob: bf5c699717d7c466f2c5f1c0582c375e5bcbcdb3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
      SUBROUTINE ZUNGQR( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            INFO, K, LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  ZUNGQR generates an M-by-N complex matrix Q with orthonormal columns,
*  which is defined as the first N columns of a product of K elementary
*  reflectors of order M
*
*        Q  =  H(1) H(2) . . . H(k)
*
*  as returned by ZGEQRF.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix Q. M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix Q. M >= N >= 0.
*
*  K       (input) INTEGER
*          The number of elementary reflectors whose product defines the
*          matrix Q. N >= K >= 0.
*
*  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
*          On entry, the i-th column must contain the vector which
*          defines the elementary reflector H(i), for i = 1,2,...,k, as
*          returned by ZGEQRF in the first k columns of its array
*          argument A.
*          On exit, the M-by-N matrix Q.
*
*  LDA     (input) INTEGER
*          The first dimension of the array A. LDA >= max(1,M).
*
*  TAU     (input) COMPLEX*16 array, dimension (K)
*          TAU(i) must contain the scalar factor of the elementary
*          reflector H(i), as returned by ZGEQRF.
*
*  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK. LWORK >= max(1,N).
*          For optimum performance LWORK >= N*NB, where NB is the
*          optimal blocksize.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument has an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX*16         ZERO
      PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY
      INTEGER            I, IB, IINFO, IWS, J, KI, KK, L, LDWORK,
     $                   LWKOPT, NB, NBMIN, NX
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZLARFB, ZLARFT, ZUNG2R
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. External Functions ..
      INTEGER            ILAENV
      EXTERNAL           ILAENV
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      NB = ILAENV( 1, 'ZUNGQR', ' ', M, N, K, -1 )
      LWKOPT = MAX( 1, N )*NB
      WORK( 1 ) = LWKOPT
      LQUERY = ( LWORK.EQ.-1 )
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 .OR. N.GT.M ) THEN
         INFO = -2
      ELSE IF( K.LT.0 .OR. K.GT.N ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -5
      ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
         INFO = -8
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZUNGQR', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.LE.0 ) THEN
         WORK( 1 ) = 1
         RETURN
      END IF
*
      NBMIN = 2
      NX = 0
      IWS = N
      IF( NB.GT.1 .AND. NB.LT.K ) THEN
*
*        Determine when to cross over from blocked to unblocked code.
*
         NX = MAX( 0, ILAENV( 3, 'ZUNGQR', ' ', M, N, K, -1 ) )
         IF( NX.LT.K ) THEN
*
*           Determine if workspace is large enough for blocked code.
*
            LDWORK = N
            IWS = LDWORK*NB
            IF( LWORK.LT.IWS ) THEN
*
*              Not enough workspace to use optimal NB:  reduce NB and
*              determine the minimum value of NB.
*
               NB = LWORK / LDWORK
               NBMIN = MAX( 2, ILAENV( 2, 'ZUNGQR', ' ', M, N, K, -1 ) )
            END IF
         END IF
      END IF
*
      IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
*
*        Use blocked code after the last block.
*        The first kk columns are handled by the block method.
*
         KI = ( ( K-NX-1 ) / NB )*NB
         KK = MIN( K, KI+NB )
*
*        Set A(1:kk,kk+1:n) to zero.
*
         DO 20 J = KK + 1, N
            DO 10 I = 1, KK
               A( I, J ) = ZERO
   10       CONTINUE
   20    CONTINUE
      ELSE
         KK = 0
      END IF
*
*     Use unblocked code for the last or only block.
*
      IF( KK.LT.N )
     $   CALL ZUNG2R( M-KK, N-KK, K-KK, A( KK+1, KK+1 ), LDA,
     $                TAU( KK+1 ), WORK, IINFO )
*
      IF( KK.GT.0 ) THEN
*
*        Use blocked code
*
         DO 50 I = KI + 1, 1, -NB
            IB = MIN( NB, K-I+1 )
            IF( I+IB.LE.N ) THEN
*
*              Form the triangular factor of the block reflector
*              H = H(i) H(i+1) . . . H(i+ib-1)
*
               CALL ZLARFT( 'Forward', 'Columnwise', M-I+1, IB,
     $                      A( I, I ), LDA, TAU( I ), WORK, LDWORK )
*
*              Apply H to A(i:m,i+ib:n) from the left
*
               CALL ZLARFB( 'Left', 'No transpose', 'Forward',
     $                      'Columnwise', M-I+1, N-I-IB+1, IB,
     $                      A( I, I ), LDA, WORK, LDWORK, A( I, I+IB ),
     $                      LDA, WORK( IB+1 ), LDWORK )
            END IF
*
*           Apply H to rows i:m of current block
*
            CALL ZUNG2R( M-I+1, IB, IB, A( I, I ), LDA, TAU( I ), WORK,
     $                   IINFO )
*
*           Set rows 1:i-1 of current block to zero
*
            DO 40 J = I, I + IB - 1
               DO 30 L = 1, I - 1
                  A( L, J ) = ZERO
   30          CONTINUE
   40       CONTINUE
   50    CONTINUE
      END IF
*
      WORK( 1 ) = IWS
      RETURN
*
*     End of ZUNGQR
*
      END