1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
|
SUBROUTINE ZLATDF( IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV,
$ JPIV )
*
* -- LAPACK auxiliary routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
INTEGER IJOB, LDZ, N
DOUBLE PRECISION RDSCAL, RDSUM
* ..
* .. Array Arguments ..
INTEGER IPIV( * ), JPIV( * )
COMPLEX*16 RHS( * ), Z( LDZ, * )
* ..
*
* Purpose
* =======
*
* ZLATDF computes the contribution to the reciprocal Dif-estimate
* by solving for x in Z * x = b, where b is chosen such that the norm
* of x is as large as possible. It is assumed that LU decomposition
* of Z has been computed by ZGETC2. On entry RHS = f holds the
* contribution from earlier solved sub-systems, and on return RHS = x.
*
* The factorization of Z returned by ZGETC2 has the form
* Z = P * L * U * Q, where P and Q are permutation matrices. L is lower
* triangular with unit diagonal elements and U is upper triangular.
*
* Arguments
* =========
*
* IJOB (input) INTEGER
* IJOB = 2: First compute an approximative null-vector e
* of Z using ZGECON, e is normalized and solve for
* Zx = +-e - f with the sign giving the greater value of
* 2-norm(x). About 5 times as expensive as Default.
* IJOB .ne. 2: Local look ahead strategy where
* all entries of the r.h.s. b is choosen as either +1 or
* -1. Default.
*
* N (input) INTEGER
* The number of columns of the matrix Z.
*
* Z (input) DOUBLE PRECISION array, dimension (LDZ, N)
* On entry, the LU part of the factorization of the n-by-n
* matrix Z computed by ZGETC2: Z = P * L * U * Q
*
* LDZ (input) INTEGER
* The leading dimension of the array Z. LDA >= max(1, N).
*
* RHS (input/output) DOUBLE PRECISION array, dimension (N).
* On entry, RHS contains contributions from other subsystems.
* On exit, RHS contains the solution of the subsystem with
* entries according to the value of IJOB (see above).
*
* RDSUM (input/output) DOUBLE PRECISION
* On entry, the sum of squares of computed contributions to
* the Dif-estimate under computation by ZTGSYL, where the
* scaling factor RDSCAL (see below) has been factored out.
* On exit, the corresponding sum of squares updated with the
* contributions from the current sub-system.
* If TRANS = 'T' RDSUM is not touched.
* NOTE: RDSUM only makes sense when ZTGSY2 is called by CTGSYL.
*
* RDSCAL (input/output) DOUBLE PRECISION
* On entry, scaling factor used to prevent overflow in RDSUM.
* On exit, RDSCAL is updated w.r.t. the current contributions
* in RDSUM.
* If TRANS = 'T', RDSCAL is not touched.
* NOTE: RDSCAL only makes sense when ZTGSY2 is called by
* ZTGSYL.
*
* IPIV (input) INTEGER array, dimension (N).
* The pivot indices; for 1 <= i <= N, row i of the
* matrix has been interchanged with row IPIV(i).
*
* JPIV (input) INTEGER array, dimension (N).
* The pivot indices; for 1 <= j <= N, column j of the
* matrix has been interchanged with column JPIV(j).
*
* Further Details
* ===============
*
* Based on contributions by
* Bo Kagstrom and Peter Poromaa, Department of Computing Science,
* Umea University, S-901 87 Umea, Sweden.
*
* This routine is a further developed implementation of algorithm
* BSOLVE in [1] using complete pivoting in the LU factorization.
*
* [1] Bo Kagstrom and Lars Westin,
* Generalized Schur Methods with Condition Estimators for
* Solving the Generalized Sylvester Equation, IEEE Transactions
* on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751.
*
* [2] Peter Poromaa,
* On Efficient and Robust Estimators for the Separation
* between two Regular Matrix Pairs with Applications in
* Condition Estimation. Report UMINF-95.05, Department of
* Computing Science, Umea University, S-901 87 Umea, Sweden,
* 1995.
*
* =====================================================================
*
* .. Parameters ..
INTEGER MAXDIM
PARAMETER ( MAXDIM = 2 )
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
COMPLEX*16 CONE
PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
INTEGER I, INFO, J, K
DOUBLE PRECISION RTEMP, SCALE, SMINU, SPLUS
COMPLEX*16 BM, BP, PMONE, TEMP
* ..
* .. Local Arrays ..
DOUBLE PRECISION RWORK( MAXDIM )
COMPLEX*16 WORK( 4*MAXDIM ), XM( MAXDIM ), XP( MAXDIM )
* ..
* .. External Subroutines ..
EXTERNAL ZAXPY, ZCOPY, ZGECON, ZGESC2, ZLASSQ, ZLASWP,
$ ZSCAL
* ..
* .. External Functions ..
DOUBLE PRECISION DZASUM
COMPLEX*16 ZDOTC
EXTERNAL DZASUM, ZDOTC
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, SQRT
* ..
* .. Executable Statements ..
*
IF( IJOB.NE.2 ) THEN
*
* Apply permutations IPIV to RHS
*
CALL ZLASWP( 1, RHS, LDZ, 1, N-1, IPIV, 1 )
*
* Solve for L-part choosing RHS either to +1 or -1.
*
PMONE = -CONE
DO 10 J = 1, N - 1
BP = RHS( J ) + CONE
BM = RHS( J ) - CONE
SPLUS = ONE
*
* Lockahead for L- part RHS(1:N-1) = +-1
* SPLUS and SMIN computed more efficiently than in BSOLVE[1].
*
SPLUS = SPLUS + DBLE( ZDOTC( N-J, Z( J+1, J ), 1, Z( J+1,
$ J ), 1 ) )
SMINU = DBLE( ZDOTC( N-J, Z( J+1, J ), 1, RHS( J+1 ), 1 ) )
SPLUS = SPLUS*DBLE( RHS( J ) )
IF( SPLUS.GT.SMINU ) THEN
RHS( J ) = BP
ELSE IF( SMINU.GT.SPLUS ) THEN
RHS( J ) = BM
ELSE
*
* In this case the updating sums are equal and we can
* choose RHS(J) +1 or -1. The first time this happens we
* choose -1, thereafter +1. This is a simple way to get
* good estimates of matrices like Byers well-known example
* (see [1]). (Not done in BSOLVE.)
*
RHS( J ) = RHS( J ) + PMONE
PMONE = CONE
END IF
*
* Compute the remaining r.h.s.
*
TEMP = -RHS( J )
CALL ZAXPY( N-J, TEMP, Z( J+1, J ), 1, RHS( J+1 ), 1 )
10 CONTINUE
*
* Solve for U- part, lockahead for RHS(N) = +-1. This is not done
* In BSOLVE and will hopefully give us a better estimate because
* any ill-conditioning of the original matrix is transfered to U
* and not to L. U(N, N) is an approximation to sigma_min(LU).
*
CALL ZCOPY( N-1, RHS, 1, WORK, 1 )
WORK( N ) = RHS( N ) + CONE
RHS( N ) = RHS( N ) - CONE
SPLUS = ZERO
SMINU = ZERO
DO 30 I = N, 1, -1
TEMP = CONE / Z( I, I )
WORK( I ) = WORK( I )*TEMP
RHS( I ) = RHS( I )*TEMP
DO 20 K = I + 1, N
WORK( I ) = WORK( I ) - WORK( K )*( Z( I, K )*TEMP )
RHS( I ) = RHS( I ) - RHS( K )*( Z( I, K )*TEMP )
20 CONTINUE
SPLUS = SPLUS + ABS( WORK( I ) )
SMINU = SMINU + ABS( RHS( I ) )
30 CONTINUE
IF( SPLUS.GT.SMINU )
$ CALL ZCOPY( N, WORK, 1, RHS, 1 )
*
* Apply the permutations JPIV to the computed solution (RHS)
*
CALL ZLASWP( 1, RHS, LDZ, 1, N-1, JPIV, -1 )
*
* Compute the sum of squares
*
CALL ZLASSQ( N, RHS, 1, RDSCAL, RDSUM )
RETURN
END IF
*
* ENTRY IJOB = 2
*
* Compute approximate nullvector XM of Z
*
CALL ZGECON( 'I', N, Z, LDZ, ONE, RTEMP, WORK, RWORK, INFO )
CALL ZCOPY( N, WORK( N+1 ), 1, XM, 1 )
*
* Compute RHS
*
CALL ZLASWP( 1, XM, LDZ, 1, N-1, IPIV, -1 )
TEMP = CONE / SQRT( ZDOTC( N, XM, 1, XM, 1 ) )
CALL ZSCAL( N, TEMP, XM, 1 )
CALL ZCOPY( N, XM, 1, XP, 1 )
CALL ZAXPY( N, CONE, RHS, 1, XP, 1 )
CALL ZAXPY( N, -CONE, XM, 1, RHS, 1 )
CALL ZGESC2( N, Z, LDZ, RHS, IPIV, JPIV, SCALE )
CALL ZGESC2( N, Z, LDZ, XP, IPIV, JPIV, SCALE )
IF( DZASUM( N, XP, 1 ).GT.DZASUM( N, RHS, 1 ) )
$ CALL ZCOPY( N, XP, 1, RHS, 1 )
*
* Compute the sum of squares
*
CALL ZLASSQ( N, RHS, 1, RDSCAL, RDSUM )
RETURN
*
* End of ZLATDF
*
END
|