1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
|
SUBROUTINE ZLAIC1( JOB, J, X, SEST, W, GAMMA, SESTPR, S, C )
*
* -- LAPACK auxiliary routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
INTEGER J, JOB
DOUBLE PRECISION SEST, SESTPR
COMPLEX*16 C, GAMMA, S
* ..
* .. Array Arguments ..
COMPLEX*16 W( J ), X( J )
* ..
*
* Purpose
* =======
*
* ZLAIC1 applies one step of incremental condition estimation in
* its simplest version:
*
* Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j
* lower triangular matrix L, such that
* twonorm(L*x) = sest
* Then ZLAIC1 computes sestpr, s, c such that
* the vector
* [ s*x ]
* xhat = [ c ]
* is an approximate singular vector of
* [ L 0 ]
* Lhat = [ w' gamma ]
* in the sense that
* twonorm(Lhat*xhat) = sestpr.
*
* Depending on JOB, an estimate for the largest or smallest singular
* value is computed.
*
* Note that [s c]' and sestpr**2 is an eigenpair of the system
*
* diag(sest*sest, 0) + [alpha gamma] * [ conjg(alpha) ]
* [ conjg(gamma) ]
*
* where alpha = conjg(x)'*w.
*
* Arguments
* =========
*
* JOB (input) INTEGER
* = 1: an estimate for the largest singular value is computed.
* = 2: an estimate for the smallest singular value is computed.
*
* J (input) INTEGER
* Length of X and W
*
* X (input) COMPLEX*16 array, dimension (J)
* The j-vector x.
*
* SEST (input) DOUBLE PRECISION
* Estimated singular value of j by j matrix L
*
* W (input) COMPLEX*16 array, dimension (J)
* The j-vector w.
*
* GAMMA (input) COMPLEX*16
* The diagonal element gamma.
*
* SESTPR (output) DOUBLE PRECISION
* Estimated singular value of (j+1) by (j+1) matrix Lhat.
*
* S (output) COMPLEX*16
* Sine needed in forming xhat.
*
* C (output) COMPLEX*16
* Cosine needed in forming xhat.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
DOUBLE PRECISION HALF, FOUR
PARAMETER ( HALF = 0.5D0, FOUR = 4.0D0 )
* ..
* .. Local Scalars ..
DOUBLE PRECISION ABSALP, ABSEST, ABSGAM, B, EPS, NORMA, S1, S2,
$ SCL, T, TEST, TMP, ZETA1, ZETA2
COMPLEX*16 ALPHA, COSINE, SINE
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DCONJG, MAX, SQRT
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH
COMPLEX*16 ZDOTC
EXTERNAL DLAMCH, ZDOTC
* ..
* .. Executable Statements ..
*
EPS = DLAMCH( 'Epsilon' )
ALPHA = ZDOTC( J, X, 1, W, 1 )
*
ABSALP = ABS( ALPHA )
ABSGAM = ABS( GAMMA )
ABSEST = ABS( SEST )
*
IF( JOB.EQ.1 ) THEN
*
* Estimating largest singular value
*
* special cases
*
IF( SEST.EQ.ZERO ) THEN
S1 = MAX( ABSGAM, ABSALP )
IF( S1.EQ.ZERO ) THEN
S = ZERO
C = ONE
SESTPR = ZERO
ELSE
S = ALPHA / S1
C = GAMMA / S1
TMP = SQRT( S*DCONJG( S )+C*DCONJG( C ) )
S = S / TMP
C = C / TMP
SESTPR = S1*TMP
END IF
RETURN
ELSE IF( ABSGAM.LE.EPS*ABSEST ) THEN
S = ONE
C = ZERO
TMP = MAX( ABSEST, ABSALP )
S1 = ABSEST / TMP
S2 = ABSALP / TMP
SESTPR = TMP*SQRT( S1*S1+S2*S2 )
RETURN
ELSE IF( ABSALP.LE.EPS*ABSEST ) THEN
S1 = ABSGAM
S2 = ABSEST
IF( S1.LE.S2 ) THEN
S = ONE
C = ZERO
SESTPR = S2
ELSE
S = ZERO
C = ONE
SESTPR = S1
END IF
RETURN
ELSE IF( ABSEST.LE.EPS*ABSALP .OR. ABSEST.LE.EPS*ABSGAM ) THEN
S1 = ABSGAM
S2 = ABSALP
IF( S1.LE.S2 ) THEN
TMP = S1 / S2
SCL = SQRT( ONE+TMP*TMP )
SESTPR = S2*SCL
S = ( ALPHA / S2 ) / SCL
C = ( GAMMA / S2 ) / SCL
ELSE
TMP = S2 / S1
SCL = SQRT( ONE+TMP*TMP )
SESTPR = S1*SCL
S = ( ALPHA / S1 ) / SCL
C = ( GAMMA / S1 ) / SCL
END IF
RETURN
ELSE
*
* normal case
*
ZETA1 = ABSALP / ABSEST
ZETA2 = ABSGAM / ABSEST
*
B = ( ONE-ZETA1*ZETA1-ZETA2*ZETA2 )*HALF
C = ZETA1*ZETA1
IF( B.GT.ZERO ) THEN
T = C / ( B+SQRT( B*B+C ) )
ELSE
T = SQRT( B*B+C ) - B
END IF
*
SINE = -( ALPHA / ABSEST ) / T
COSINE = -( GAMMA / ABSEST ) / ( ONE+T )
TMP = SQRT( SINE*DCONJG( SINE )+COSINE*DCONJG( COSINE ) )
S = SINE / TMP
C = COSINE / TMP
SESTPR = SQRT( T+ONE )*ABSEST
RETURN
END IF
*
ELSE IF( JOB.EQ.2 ) THEN
*
* Estimating smallest singular value
*
* special cases
*
IF( SEST.EQ.ZERO ) THEN
SESTPR = ZERO
IF( MAX( ABSGAM, ABSALP ).EQ.ZERO ) THEN
SINE = ONE
COSINE = ZERO
ELSE
SINE = -DCONJG( GAMMA )
COSINE = DCONJG( ALPHA )
END IF
S1 = MAX( ABS( SINE ), ABS( COSINE ) )
S = SINE / S1
C = COSINE / S1
TMP = SQRT( S*DCONJG( S )+C*DCONJG( C ) )
S = S / TMP
C = C / TMP
RETURN
ELSE IF( ABSGAM.LE.EPS*ABSEST ) THEN
S = ZERO
C = ONE
SESTPR = ABSGAM
RETURN
ELSE IF( ABSALP.LE.EPS*ABSEST ) THEN
S1 = ABSGAM
S2 = ABSEST
IF( S1.LE.S2 ) THEN
S = ZERO
C = ONE
SESTPR = S1
ELSE
S = ONE
C = ZERO
SESTPR = S2
END IF
RETURN
ELSE IF( ABSEST.LE.EPS*ABSALP .OR. ABSEST.LE.EPS*ABSGAM ) THEN
S1 = ABSGAM
S2 = ABSALP
IF( S1.LE.S2 ) THEN
TMP = S1 / S2
SCL = SQRT( ONE+TMP*TMP )
SESTPR = ABSEST*( TMP / SCL )
S = -( DCONJG( GAMMA ) / S2 ) / SCL
C = ( DCONJG( ALPHA ) / S2 ) / SCL
ELSE
TMP = S2 / S1
SCL = SQRT( ONE+TMP*TMP )
SESTPR = ABSEST / SCL
S = -( DCONJG( GAMMA ) / S1 ) / SCL
C = ( DCONJG( ALPHA ) / S1 ) / SCL
END IF
RETURN
ELSE
*
* normal case
*
ZETA1 = ABSALP / ABSEST
ZETA2 = ABSGAM / ABSEST
*
NORMA = MAX( ONE+ZETA1*ZETA1+ZETA1*ZETA2,
$ ZETA1*ZETA2+ZETA2*ZETA2 )
*
* See if root is closer to zero or to ONE
*
TEST = ONE + TWO*( ZETA1-ZETA2 )*( ZETA1+ZETA2 )
IF( TEST.GE.ZERO ) THEN
*
* root is close to zero, compute directly
*
B = ( ZETA1*ZETA1+ZETA2*ZETA2+ONE )*HALF
C = ZETA2*ZETA2
T = C / ( B+SQRT( ABS( B*B-C ) ) )
SINE = ( ALPHA / ABSEST ) / ( ONE-T )
COSINE = -( GAMMA / ABSEST ) / T
SESTPR = SQRT( T+FOUR*EPS*EPS*NORMA )*ABSEST
ELSE
*
* root is closer to ONE, shift by that amount
*
B = ( ZETA2*ZETA2+ZETA1*ZETA1-ONE )*HALF
C = ZETA1*ZETA1
IF( B.GE.ZERO ) THEN
T = -C / ( B+SQRT( B*B+C ) )
ELSE
T = B - SQRT( B*B+C )
END IF
SINE = -( ALPHA / ABSEST ) / T
COSINE = -( GAMMA / ABSEST ) / ( ONE+T )
SESTPR = SQRT( ONE+T+FOUR*EPS*EPS*NORMA )*ABSEST
END IF
TMP = SQRT( SINE*DCONJG( SINE )+COSINE*DCONJG( COSINE ) )
S = SINE / TMP
C = COSINE / TMP
RETURN
*
END IF
END IF
RETURN
*
* End of ZLAIC1
*
END
|