1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
|
SUBROUTINE ZGECON( NORM, N, A, LDA, ANORM, RCOND, WORK, RWORK,
$ INFO )
*
* -- LAPACK routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH.
*
* .. Scalar Arguments ..
CHARACTER NORM
INTEGER INFO, LDA, N
DOUBLE PRECISION ANORM, RCOND
* ..
* .. Array Arguments ..
DOUBLE PRECISION RWORK( * )
COMPLEX*16 A( LDA, * ), WORK( * )
* ..
*
* Purpose
* =======
*
* ZGECON estimates the reciprocal of the condition number of a general
* complex matrix A, in either the 1-norm or the infinity-norm, using
* the LU factorization computed by ZGETRF.
*
* An estimate is obtained for norm(inv(A)), and the reciprocal of the
* condition number is computed as
* RCOND = 1 / ( norm(A) * norm(inv(A)) ).
*
* Arguments
* =========
*
* NORM (input) CHARACTER*1
* Specifies whether the 1-norm condition number or the
* infinity-norm condition number is required:
* = '1' or 'O': 1-norm;
* = 'I': Infinity-norm.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* A (input) COMPLEX*16 array, dimension (LDA,N)
* The factors L and U from the factorization A = P*L*U
* as computed by ZGETRF.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* ANORM (input) DOUBLE PRECISION
* If NORM = '1' or 'O', the 1-norm of the original matrix A.
* If NORM = 'I', the infinity-norm of the original matrix A.
*
* RCOND (output) DOUBLE PRECISION
* The reciprocal of the condition number of the matrix A,
* computed as RCOND = 1/(norm(A) * norm(inv(A))).
*
* WORK (workspace) COMPLEX*16 array, dimension (2*N)
*
* RWORK (workspace) DOUBLE PRECISION array, dimension (2*N)
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL ONENRM
CHARACTER NORMIN
INTEGER IX, KASE, KASE1
DOUBLE PRECISION AINVNM, SCALE, SL, SMLNUM, SU
COMPLEX*16 ZDUM
* ..
* .. Local Arrays ..
INTEGER ISAVE( 3 )
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER IZAMAX
DOUBLE PRECISION DLAMCH
EXTERNAL LSAME, IZAMAX, DLAMCH
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZDRSCL, ZLACN2, ZLATRS
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DIMAG, MAX
* ..
* .. Statement Functions ..
DOUBLE PRECISION CABS1
* ..
* .. Statement Function definitions ..
CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
ELSE IF( ANORM.LT.ZERO ) THEN
INFO = -5
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZGECON', -INFO )
RETURN
END IF
*
* Quick return if possible
*
RCOND = ZERO
IF( N.EQ.0 ) THEN
RCOND = ONE
RETURN
ELSE IF( ANORM.EQ.ZERO ) THEN
RETURN
END IF
*
SMLNUM = DLAMCH( 'Safe minimum' )
*
* Estimate the norm of inv(A).
*
AINVNM = ZERO
NORMIN = 'N'
IF( ONENRM ) THEN
KASE1 = 1
ELSE
KASE1 = 2
END IF
KASE = 0
10 CONTINUE
CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
IF( KASE.NE.0 ) THEN
IF( KASE.EQ.KASE1 ) THEN
*
* Multiply by inv(L).
*
CALL ZLATRS( 'Lower', 'No transpose', 'Unit', NORMIN, N, A,
$ LDA, WORK, SL, RWORK, INFO )
*
* Multiply by inv(U).
*
CALL ZLATRS( 'Upper', 'No transpose', 'Non-unit', NORMIN, N,
$ A, LDA, WORK, SU, RWORK( N+1 ), INFO )
ELSE
*
* Multiply by inv(U').
*
CALL ZLATRS( 'Upper', 'Conjugate transpose', 'Non-unit',
$ NORMIN, N, A, LDA, WORK, SU, RWORK( N+1 ),
$ INFO )
*
* Multiply by inv(L').
*
CALL ZLATRS( 'Lower', 'Conjugate transpose', 'Unit', NORMIN,
$ N, A, LDA, WORK, SL, RWORK, INFO )
END IF
*
* Divide X by 1/(SL*SU) if doing so will not cause overflow.
*
SCALE = SL*SU
NORMIN = 'Y'
IF( SCALE.NE.ONE ) THEN
IX = IZAMAX( N, WORK, 1 )
IF( SCALE.LT.CABS1( WORK( IX ) )*SMLNUM .OR. SCALE.EQ.ZERO )
$ GO TO 20
CALL ZDRSCL( N, SCALE, WORK, 1 )
END IF
GO TO 10
END IF
*
* Compute the estimate of the reciprocal condition number.
*
IF( AINVNM.NE.ZERO )
$ RCOND = ( ONE / AINVNM ) / ANORM
*
20 CONTINUE
RETURN
*
* End of ZGECON
*
END
|