summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/zgecon.f
blob: cfaaca35e8da139277d23b4a8c1a2fef1204fc90 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
      SUBROUTINE ZGECON( NORM, N, A, LDA, ANORM, RCOND, WORK, RWORK,
     $                   INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH.
*
*     .. Scalar Arguments ..
      CHARACTER          NORM
      INTEGER            INFO, LDA, N
      DOUBLE PRECISION   ANORM, RCOND
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   RWORK( * )
      COMPLEX*16         A( LDA, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  ZGECON estimates the reciprocal of the condition number of a general
*  complex matrix A, in either the 1-norm or the infinity-norm, using
*  the LU factorization computed by ZGETRF.
*
*  An estimate is obtained for norm(inv(A)), and the reciprocal of the
*  condition number is computed as
*     RCOND = 1 / ( norm(A) * norm(inv(A)) ).
*
*  Arguments
*  =========
*
*  NORM    (input) CHARACTER*1
*          Specifies whether the 1-norm condition number or the
*          infinity-norm condition number is required:
*          = '1' or 'O':  1-norm;
*          = 'I':         Infinity-norm.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input) COMPLEX*16 array, dimension (LDA,N)
*          The factors L and U from the factorization A = P*L*U
*          as computed by ZGETRF.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  ANORM   (input) DOUBLE PRECISION
*          If NORM = '1' or 'O', the 1-norm of the original matrix A.
*          If NORM = 'I', the infinity-norm of the original matrix A.
*
*  RCOND   (output) DOUBLE PRECISION
*          The reciprocal of the condition number of the matrix A,
*          computed as RCOND = 1/(norm(A) * norm(inv(A))).
*
*  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
*
*  RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N)
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            ONENRM
      CHARACTER          NORMIN
      INTEGER            IX, KASE, KASE1
      DOUBLE PRECISION   AINVNM, SCALE, SL, SMLNUM, SU
      COMPLEX*16         ZDUM
*     ..
*     .. Local Arrays ..
      INTEGER            ISAVE( 3 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            IZAMAX
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           LSAME, IZAMAX, DLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, ZDRSCL, ZLACN2, ZLATRS
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, DIMAG, MAX
*     ..
*     .. Statement Functions ..
      DOUBLE PRECISION   CABS1
*     ..
*     .. Statement Function definitions ..
      CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
      IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      ELSE IF( ANORM.LT.ZERO ) THEN
         INFO = -5
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZGECON', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      RCOND = ZERO
      IF( N.EQ.0 ) THEN
         RCOND = ONE
         RETURN
      ELSE IF( ANORM.EQ.ZERO ) THEN
         RETURN
      END IF
*
      SMLNUM = DLAMCH( 'Safe minimum' )
*
*     Estimate the norm of inv(A).
*
      AINVNM = ZERO
      NORMIN = 'N'
      IF( ONENRM ) THEN
         KASE1 = 1
      ELSE
         KASE1 = 2
      END IF
      KASE = 0
   10 CONTINUE
      CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
      IF( KASE.NE.0 ) THEN
         IF( KASE.EQ.KASE1 ) THEN
*
*           Multiply by inv(L).
*
            CALL ZLATRS( 'Lower', 'No transpose', 'Unit', NORMIN, N, A,
     $                   LDA, WORK, SL, RWORK, INFO )
*
*           Multiply by inv(U).
*
            CALL ZLATRS( 'Upper', 'No transpose', 'Non-unit', NORMIN, N,
     $                   A, LDA, WORK, SU, RWORK( N+1 ), INFO )
         ELSE
*
*           Multiply by inv(U').
*
            CALL ZLATRS( 'Upper', 'Conjugate transpose', 'Non-unit',
     $                   NORMIN, N, A, LDA, WORK, SU, RWORK( N+1 ),
     $                   INFO )
*
*           Multiply by inv(L').
*
            CALL ZLATRS( 'Lower', 'Conjugate transpose', 'Unit', NORMIN,
     $                   N, A, LDA, WORK, SL, RWORK, INFO )
         END IF
*
*        Divide X by 1/(SL*SU) if doing so will not cause overflow.
*
         SCALE = SL*SU
         NORMIN = 'Y'
         IF( SCALE.NE.ONE ) THEN
            IX = IZAMAX( N, WORK, 1 )
            IF( SCALE.LT.CABS1( WORK( IX ) )*SMLNUM .OR. SCALE.EQ.ZERO )
     $         GO TO 20
            CALL ZDRSCL( N, SCALE, WORK, 1 )
         END IF
         GO TO 10
      END IF
*
*     Compute the estimate of the reciprocal condition number.
*
      IF( AINVNM.NE.ZERO )
     $   RCOND = ( ONE / AINVNM ) / ANORM
*
   20 CONTINUE
      RETURN
*
*     End of ZGECON
*
      END