summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dtrtri.f
blob: 375813c6d097041710a191b07ae1da61ddb68c4c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
      SUBROUTINE DTRTRI( UPLO, DIAG, N, A, LDA, INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          DIAG, UPLO
      INTEGER            INFO, LDA, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * )
*     ..
*
*  Purpose
*  =======
*
*  DTRTRI computes the inverse of a real upper or lower triangular
*  matrix A.
*
*  This is the Level 3 BLAS version of the algorithm.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          = 'U':  A is upper triangular;
*          = 'L':  A is lower triangular.
*
*  DIAG    (input) CHARACTER*1
*          = 'N':  A is non-unit triangular;
*          = 'U':  A is unit triangular.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
*          On entry, the triangular matrix A.  If UPLO = 'U', the
*          leading N-by-N upper triangular part of the array A contains
*          the upper triangular matrix, and the strictly lower
*          triangular part of A is not referenced.  If UPLO = 'L', the
*          leading N-by-N lower triangular part of the array A contains
*          the lower triangular matrix, and the strictly upper
*          triangular part of A is not referenced.  If DIAG = 'U', the
*          diagonal elements of A are also not referenced and are
*          assumed to be 1.
*          On exit, the (triangular) inverse of the original matrix, in
*          the same storage format.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -i, the i-th argument had an illegal value
*          > 0: if INFO = i, A(i,i) is exactly zero.  The triangular
*               matrix is singular and its inverse can not be computed.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            NOUNIT, UPPER
      INTEGER            J, JB, NB, NN
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      EXTERNAL           LSAME, ILAENV
*     ..
*     .. External Subroutines ..
      EXTERNAL           DTRMM, DTRSM, DTRTI2, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      NOUNIT = LSAME( DIAG, 'N' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DTRTRI', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Check for singularity if non-unit.
*
      IF( NOUNIT ) THEN
         DO 10 INFO = 1, N
            IF( A( INFO, INFO ).EQ.ZERO )
     $         RETURN
   10    CONTINUE
         INFO = 0
      END IF
*
*     Determine the block size for this environment.
*
      NB = ILAENV( 1, 'DTRTRI', UPLO // DIAG, N, -1, -1, -1 )
      IF( NB.LE.1 .OR. NB.GE.N ) THEN
*
*        Use unblocked code
*
         CALL DTRTI2( UPLO, DIAG, N, A, LDA, INFO )
      ELSE
*
*        Use blocked code
*
         IF( UPPER ) THEN
*
*           Compute inverse of upper triangular matrix
*
            DO 20 J = 1, N, NB
               JB = MIN( NB, N-J+1 )
*
*              Compute rows 1:j-1 of current block column
*
               CALL DTRMM( 'Left', 'Upper', 'No transpose', DIAG, J-1,
     $                     JB, ONE, A, LDA, A( 1, J ), LDA )
               CALL DTRSM( 'Right', 'Upper', 'No transpose', DIAG, J-1,
     $                     JB, -ONE, A( J, J ), LDA, A( 1, J ), LDA )
*
*              Compute inverse of current diagonal block
*
               CALL DTRTI2( 'Upper', DIAG, JB, A( J, J ), LDA, INFO )
   20       CONTINUE
         ELSE
*
*           Compute inverse of lower triangular matrix
*
            NN = ( ( N-1 ) / NB )*NB + 1
            DO 30 J = NN, 1, -NB
               JB = MIN( NB, N-J+1 )
               IF( J+JB.LE.N ) THEN
*
*                 Compute rows j+jb:n of current block column
*
                  CALL DTRMM( 'Left', 'Lower', 'No transpose', DIAG,
     $                        N-J-JB+1, JB, ONE, A( J+JB, J+JB ), LDA,
     $                        A( J+JB, J ), LDA )
                  CALL DTRSM( 'Right', 'Lower', 'No transpose', DIAG,
     $                        N-J-JB+1, JB, -ONE, A( J, J ), LDA,
     $                        A( J+JB, J ), LDA )
               END IF
*
*              Compute inverse of current diagonal block
*
               CALL DTRTI2( 'Lower', DIAG, JB, A( J, J ), LDA, INFO )
   30       CONTINUE
         END IF
      END IF
*
      RETURN
*
*     End of DTRTRI
*
      END