summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dtgsen.f
blob: 917a7b0f74e15a82142fcc516a8850fb6cc4d63b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
      SUBROUTINE DTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
     $                   ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, M, PL,
     $                   PR, DIF, WORK, LWORK, IWORK, LIWORK, INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH.
*
*     .. Scalar Arguments ..
      LOGICAL            WANTQ, WANTZ
      INTEGER            IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
     $                   M, N
      DOUBLE PRECISION   PL, PR
*     ..
*     .. Array Arguments ..
      LOGICAL            SELECT( * )
      INTEGER            IWORK( * )
      DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
     $                   B( LDB, * ), BETA( * ), DIF( * ), Q( LDQ, * ),
     $                   WORK( * ), Z( LDZ, * )
*     ..
*
*  Purpose
*  =======
*
*  DTGSEN reorders the generalized real Schur decomposition of a real
*  matrix pair (A, B) (in terms of an orthonormal equivalence trans-
*  formation Q' * (A, B) * Z), so that a selected cluster of eigenvalues
*  appears in the leading diagonal blocks of the upper quasi-triangular
*  matrix A and the upper triangular B. The leading columns of Q and
*  Z form orthonormal bases of the corresponding left and right eigen-
*  spaces (deflating subspaces). (A, B) must be in generalized real
*  Schur canonical form (as returned by DGGES), i.e. A is block upper
*  triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper
*  triangular.
*
*  DTGSEN also computes the generalized eigenvalues
*
*              w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j)
*
*  of the reordered matrix pair (A, B).
*
*  Optionally, DTGSEN computes the estimates of reciprocal condition
*  numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
*  (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
*  between the matrix pairs (A11, B11) and (A22,B22) that correspond to
*  the selected cluster and the eigenvalues outside the cluster, resp.,
*  and norms of "projections" onto left and right eigenspaces w.r.t.
*  the selected cluster in the (1,1)-block.
*
*  Arguments
*  =========
*
*  IJOB    (input) INTEGER
*          Specifies whether condition numbers are required for the
*          cluster of eigenvalues (PL and PR) or the deflating subspaces
*          (Difu and Difl):
*           =0: Only reorder w.r.t. SELECT. No extras.
*           =1: Reciprocal of norms of "projections" onto left and right
*               eigenspaces w.r.t. the selected cluster (PL and PR).
*           =2: Upper bounds on Difu and Difl. F-norm-based estimate
*               (DIF(1:2)).
*           =3: Estimate of Difu and Difl. 1-norm-based estimate
*               (DIF(1:2)).
*               About 5 times as expensive as IJOB = 2.
*           =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
*               version to get it all.
*           =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)
*
*  WANTQ   (input) LOGICAL
*          .TRUE. : update the left transformation matrix Q;
*          .FALSE.: do not update Q.
*
*  WANTZ   (input) LOGICAL
*          .TRUE. : update the right transformation matrix Z;
*          .FALSE.: do not update Z.
*
*  SELECT  (input) LOGICAL array, dimension (N)
*          SELECT specifies the eigenvalues in the selected cluster.
*          To select a real eigenvalue w(j), SELECT(j) must be set to
*          .TRUE.. To select a complex conjugate pair of eigenvalues
*          w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
*          either SELECT(j) or SELECT(j+1) or both must be set to
*          .TRUE.; a complex conjugate pair of eigenvalues must be
*          either both included in the cluster or both excluded.
*
*  N       (input) INTEGER
*          The order of the matrices A and B. N >= 0.
*
*  A       (input/output) DOUBLE PRECISION array, dimension(LDA,N)
*          On entry, the upper quasi-triangular matrix A, with (A, B) in
*          generalized real Schur canonical form.
*          On exit, A is overwritten by the reordered matrix A.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A. LDA >= max(1,N).
*
*  B       (input/output) DOUBLE PRECISION array, dimension(LDB,N)
*          On entry, the upper triangular matrix B, with (A, B) in
*          generalized real Schur canonical form.
*          On exit, B is overwritten by the reordered matrix B.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B. LDB >= max(1,N).
*
*  ALPHAR  (output) DOUBLE PRECISION array, dimension (N)
*  ALPHAI  (output) DOUBLE PRECISION array, dimension (N)
*  BETA    (output) DOUBLE PRECISION array, dimension (N)
*          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
*          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i
*          and BETA(j),j=1,...,N  are the diagonals of the complex Schur
*          form (S,T) that would result if the 2-by-2 diagonal blocks of
*          the real generalized Schur form of (A,B) were further reduced
*          to triangular form using complex unitary transformations.
*          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
*          positive, then the j-th and (j+1)-st eigenvalues are a
*          complex conjugate pair, with ALPHAI(j+1) negative.
*
*  Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
*          On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
*          On exit, Q has been postmultiplied by the left orthogonal
*          transformation matrix which reorder (A, B); The leading M
*          columns of Q form orthonormal bases for the specified pair of
*          left eigenspaces (deflating subspaces).
*          If WANTQ = .FALSE., Q is not referenced.
*
*  LDQ     (input) INTEGER
*          The leading dimension of the array Q.  LDQ >= 1;
*          and if WANTQ = .TRUE., LDQ >= N.
*
*  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
*          On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
*          On exit, Z has been postmultiplied by the left orthogonal
*          transformation matrix which reorder (A, B); The leading M
*          columns of Z form orthonormal bases for the specified pair of
*          left eigenspaces (deflating subspaces).
*          If WANTZ = .FALSE., Z is not referenced.
*
*  LDZ     (input) INTEGER
*          The leading dimension of the array Z. LDZ >= 1;
*          If WANTZ = .TRUE., LDZ >= N.
*
*  M       (output) INTEGER
*          The dimension of the specified pair of left and right eigen-
*          spaces (deflating subspaces). 0 <= M <= N.
*
*  PL      (output) DOUBLE PRECISION
*  PR      (output) DOUBLE PRECISION
*          If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
*          reciprocal of the norm of "projections" onto left and right
*          eigenspaces with respect to the selected cluster.
*          0 < PL, PR <= 1.
*          If M = 0 or M = N, PL = PR  = 1.
*          If IJOB = 0, 2 or 3, PL and PR are not referenced.
*
*  DIF     (output) DOUBLE PRECISION array, dimension (2).
*          If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
*          If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
*          Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
*          estimates of Difu and Difl.
*          If M = 0 or N, DIF(1:2) = F-norm([A, B]).
*          If IJOB = 0 or 1, DIF is not referenced.
*
*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
*          IF IJOB = 0, WORK is not referenced.  Otherwise,
*          on exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK. LWORK >=  4*N+16.
*          If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-M)).
*          If IJOB = 3 or 5, LWORK >= MAX(4*N+16, 4*M*(N-M)).
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
*          IF IJOB = 0, IWORK is not referenced.  Otherwise,
*          on exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
*
*  LIWORK  (input) INTEGER
*          The dimension of the array IWORK. LIWORK >= 1.
*          If IJOB = 1, 2 or 4, LIWORK >=  N+6.
*          If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6).
*
*          If LIWORK = -1, then a workspace query is assumed; the
*          routine only calculates the optimal size of the IWORK array,
*          returns this value as the first entry of the IWORK array, and
*          no error message related to LIWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*            =0: Successful exit.
*            <0: If INFO = -i, the i-th argument had an illegal value.
*            =1: Reordering of (A, B) failed because the transformed
*                matrix pair (A, B) would be too far from generalized
*                Schur form; the problem is very ill-conditioned.
*                (A, B) may have been partially reordered.
*                If requested, 0 is returned in DIF(*), PL and PR.
*
*  Further Details
*  ===============
*
*  DTGSEN first collects the selected eigenvalues by computing
*  orthogonal U and W that move them to the top left corner of (A, B).
*  In other words, the selected eigenvalues are the eigenvalues of
*  (A11, B11) in:
*
*                U'*(A, B)*W = (A11 A12) (B11 B12) n1
*                              ( 0  A22),( 0  B22) n2
*                                n1  n2    n1  n2
*
*  where N = n1+n2 and U' means the transpose of U. The first n1 columns
*  of U and W span the specified pair of left and right eigenspaces
*  (deflating subspaces) of (A, B).
*
*  If (A, B) has been obtained from the generalized real Schur
*  decomposition of a matrix pair (C, D) = Q*(A, B)*Z', then the
*  reordered generalized real Schur form of (C, D) is given by
*
*           (C, D) = (Q*U)*(U'*(A, B)*W)*(Z*W)',
*
*  and the first n1 columns of Q*U and Z*W span the corresponding
*  deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
*
*  Note that if the selected eigenvalue is sufficiently ill-conditioned,
*  then its value may differ significantly from its value before
*  reordering.
*
*  The reciprocal condition numbers of the left and right eigenspaces
*  spanned by the first n1 columns of U and W (or Q*U and Z*W) may
*  be returned in DIF(1:2), corresponding to Difu and Difl, resp.
*
*  The Difu and Difl are defined as:
*
*       Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
*  and
*       Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],
*
*  where sigma-min(Zu) is the smallest singular value of the
*  (2*n1*n2)-by-(2*n1*n2) matrix
*
*       Zu = [ kron(In2, A11)  -kron(A22', In1) ]
*            [ kron(In2, B11)  -kron(B22', In1) ].
*
*  Here, Inx is the identity matrix of size nx and A22' is the
*  transpose of A22. kron(X, Y) is the Kronecker product between
*  the matrices X and Y.
*
*  When DIF(2) is small, small changes in (A, B) can cause large changes
*  in the deflating subspace. An approximate (asymptotic) bound on the
*  maximum angular error in the computed deflating subspaces is
*
*       EPS * norm((A, B)) / DIF(2),
*
*  where EPS is the machine precision.
*
*  The reciprocal norm of the projectors on the left and right
*  eigenspaces associated with (A11, B11) may be returned in PL and PR.
*  They are computed as follows. First we compute L and R so that
*  P*(A, B)*Q is block diagonal, where
*
*       P = ( I -L ) n1           Q = ( I R ) n1
*           ( 0  I ) n2    and        ( 0 I ) n2
*             n1 n2                    n1 n2
*
*  and (L, R) is the solution to the generalized Sylvester equation
*
*       A11*R - L*A22 = -A12
*       B11*R - L*B22 = -B12
*
*  Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
*  An approximate (asymptotic) bound on the average absolute error of
*  the selected eigenvalues is
*
*       EPS * norm((A, B)) / PL.
*
*  There are also global error bounds which valid for perturbations up
*  to a certain restriction:  A lower bound (x) on the smallest
*  F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
*  coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
*  (i.e. (A + E, B + F), is
*
*   x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
*
*  An approximate bound on x can be computed from DIF(1:2), PL and PR.
*
*  If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
*  (L', R') and unperturbed (L, R) left and right deflating subspaces
*  associated with the selected cluster in the (1,1)-blocks can be
*  bounded as
*
*   max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
*   max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))
*
*  See LAPACK User's Guide section 4.11 or the following references
*  for more information.
*
*  Note that if the default method for computing the Frobenius-norm-
*  based estimate DIF is not wanted (see DLATDF), then the parameter
*  IDIFJB (see below) should be changed from 3 to 4 (routine DLATDF
*  (IJOB = 2 will be used)). See DTGSYL for more details.
*
*  Based on contributions by
*     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
*     Umea University, S-901 87 Umea, Sweden.
*
*  References
*  ==========
*
*  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
*      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
*      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
*      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
*
*  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
*      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
*      Estimation: Theory, Algorithms and Software,
*      Report UMINF - 94.04, Department of Computing Science, Umea
*      University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
*      Note 87. To appear in Numerical Algorithms, 1996.
*
*  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
*      for Solving the Generalized Sylvester Equation and Estimating the
*      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
*      Department of Computing Science, Umea University, S-901 87 Umea,
*      Sweden, December 1993, Revised April 1994, Also as LAPACK Working
*      Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
*      1996.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            IDIFJB
      PARAMETER          ( IDIFJB = 3 )
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY, PAIR, SWAP, WANTD, WANTD1, WANTD2,
     $                   WANTP
      INTEGER            I, IERR, IJB, K, KASE, KK, KS, LIWMIN, LWMIN,
     $                   MN2, N1, N2
      DOUBLE PRECISION   DSCALE, DSUM, EPS, RDSCAL, SMLNUM
*     ..
*     .. Local Arrays ..
      INTEGER            ISAVE( 3 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLACN2, DLACPY, DLAG2, DLASSQ, DTGEXC, DTGSYL,
     $                   XERBLA
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           DLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, SIGN, SQRT
*     ..
*     .. Executable Statements ..
*
*     Decode and test the input parameters
*
      INFO = 0
      LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
*
      IF( IJOB.LT.0 .OR. IJOB.GT.5 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -5
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -9
      ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
         INFO = -14
      ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
         INFO = -16
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DTGSEN', -INFO )
         RETURN
      END IF
*
*     Get machine constants
*
      EPS = DLAMCH( 'P' )
      SMLNUM = DLAMCH( 'S' ) / EPS
      IERR = 0
*
      WANTP = IJOB.EQ.1 .OR. IJOB.GE.4
      WANTD1 = IJOB.EQ.2 .OR. IJOB.EQ.4
      WANTD2 = IJOB.EQ.3 .OR. IJOB.EQ.5
      WANTD = WANTD1 .OR. WANTD2
*
*     Set M to the dimension of the specified pair of deflating
*     subspaces.
*
      M = 0
      PAIR = .FALSE.
      DO 10 K = 1, N
         IF( PAIR ) THEN
            PAIR = .FALSE.
         ELSE
            IF( K.LT.N ) THEN
               IF( A( K+1, K ).EQ.ZERO ) THEN
                  IF( SELECT( K ) )
     $               M = M + 1
               ELSE
                  PAIR = .TRUE.
                  IF( SELECT( K ) .OR. SELECT( K+1 ) )
     $               M = M + 2
               END IF
            ELSE
               IF( SELECT( N ) )
     $            M = M + 1
            END IF
         END IF
   10 CONTINUE
*
      IF( IJOB.EQ.1 .OR. IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN
         LWMIN = MAX( 1, 4*N+16, 2*M*( N-M ) )
         LIWMIN = MAX( 1, N+6 )
      ELSE IF( IJOB.EQ.3 .OR. IJOB.EQ.5 ) THEN
         LWMIN = MAX( 1, 4*N+16, 4*M*( N-M ) )
         LIWMIN = MAX( 1, 2*M*( N-M ), N+6 )
      ELSE
         LWMIN = MAX( 1, 4*N+16 )
         LIWMIN = 1
      END IF
*
      WORK( 1 ) = LWMIN
      IWORK( 1 ) = LIWMIN
*
      IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
         INFO = -22
      ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
         INFO = -24
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DTGSEN', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( M.EQ.N .OR. M.EQ.0 ) THEN
         IF( WANTP ) THEN
            PL = ONE
            PR = ONE
         END IF
         IF( WANTD ) THEN
            DSCALE = ZERO
            DSUM = ONE
            DO 20 I = 1, N
               CALL DLASSQ( N, A( 1, I ), 1, DSCALE, DSUM )
               CALL DLASSQ( N, B( 1, I ), 1, DSCALE, DSUM )
   20       CONTINUE
            DIF( 1 ) = DSCALE*SQRT( DSUM )
            DIF( 2 ) = DIF( 1 )
         END IF
         GO TO 60
      END IF
*
*     Collect the selected blocks at the top-left corner of (A, B).
*
      KS = 0
      PAIR = .FALSE.
      DO 30 K = 1, N
         IF( PAIR ) THEN
            PAIR = .FALSE.
         ELSE
*
            SWAP = SELECT( K )
            IF( K.LT.N ) THEN
               IF( A( K+1, K ).NE.ZERO ) THEN
                  PAIR = .TRUE.
                  SWAP = SWAP .OR. SELECT( K+1 )
               END IF
            END IF
*
            IF( SWAP ) THEN
               KS = KS + 1
*
*              Swap the K-th block to position KS.
*              Perform the reordering of diagonal blocks in (A, B)
*              by orthogonal transformation matrices and update
*              Q and Z accordingly (if requested):
*
               KK = K
               IF( K.NE.KS )
     $            CALL DTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ,
     $                         Z, LDZ, KK, KS, WORK, LWORK, IERR )
*
               IF( IERR.GT.0 ) THEN
*
*                 Swap is rejected: exit.
*
                  INFO = 1
                  IF( WANTP ) THEN
                     PL = ZERO
                     PR = ZERO
                  END IF
                  IF( WANTD ) THEN
                     DIF( 1 ) = ZERO
                     DIF( 2 ) = ZERO
                  END IF
                  GO TO 60
               END IF
*
               IF( PAIR )
     $            KS = KS + 1
            END IF
         END IF
   30 CONTINUE
      IF( WANTP ) THEN
*
*        Solve generalized Sylvester equation for R and L
*        and compute PL and PR.
*
         N1 = M
         N2 = N - M
         I = N1 + 1
         IJB = 0
         CALL DLACPY( 'Full', N1, N2, A( 1, I ), LDA, WORK, N1 )
         CALL DLACPY( 'Full', N1, N2, B( 1, I ), LDB, WORK( N1*N2+1 ),
     $                N1 )
         CALL DTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
     $                N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ), N1,
     $                DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ),
     $                LWORK-2*N1*N2, IWORK, IERR )
*
*        Estimate the reciprocal of norms of "projections" onto left
*        and right eigenspaces.
*
         RDSCAL = ZERO
         DSUM = ONE
         CALL DLASSQ( N1*N2, WORK, 1, RDSCAL, DSUM )
         PL = RDSCAL*SQRT( DSUM )
         IF( PL.EQ.ZERO ) THEN
            PL = ONE
         ELSE
            PL = DSCALE / ( SQRT( DSCALE*DSCALE / PL+PL )*SQRT( PL ) )
         END IF
         RDSCAL = ZERO
         DSUM = ONE
         CALL DLASSQ( N1*N2, WORK( N1*N2+1 ), 1, RDSCAL, DSUM )
         PR = RDSCAL*SQRT( DSUM )
         IF( PR.EQ.ZERO ) THEN
            PR = ONE
         ELSE
            PR = DSCALE / ( SQRT( DSCALE*DSCALE / PR+PR )*SQRT( PR ) )
         END IF
      END IF
*
      IF( WANTD ) THEN
*
*        Compute estimates of Difu and Difl.
*
         IF( WANTD1 ) THEN
            N1 = M
            N2 = N - M
            I = N1 + 1
            IJB = IDIFJB
*
*           Frobenius norm-based Difu-estimate.
*
            CALL DTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
     $                   N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ),
     $                   N1, DSCALE, DIF( 1 ), WORK( 2*N1*N2+1 ),
     $                   LWORK-2*N1*N2, IWORK, IERR )
*
*           Frobenius norm-based Difl-estimate.
*
            CALL DTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA, WORK,
     $                   N2, B( I, I ), LDB, B, LDB, WORK( N1*N2+1 ),
     $                   N2, DSCALE, DIF( 2 ), WORK( 2*N1*N2+1 ),
     $                   LWORK-2*N1*N2, IWORK, IERR )
         ELSE
*
*
*           Compute 1-norm-based estimates of Difu and Difl using
*           reversed communication with DLACN2. In each step a
*           generalized Sylvester equation or a transposed variant
*           is solved.
*
            KASE = 0
            N1 = M
            N2 = N - M
            I = N1 + 1
            IJB = 0
            MN2 = 2*N1*N2
*
*           1-norm-based estimate of Difu.
*
   40       CONTINUE
            CALL DLACN2( MN2, WORK( MN2+1 ), WORK, IWORK, DIF( 1 ),
     $                   KASE, ISAVE )
            IF( KASE.NE.0 ) THEN
               IF( KASE.EQ.1 ) THEN
*
*                 Solve generalized Sylvester equation.
*
                  CALL DTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA,
     $                         WORK, N1, B, LDB, B( I, I ), LDB,
     $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
     $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
     $                         IERR )
               ELSE
*
*                 Solve the transposed variant.
*
                  CALL DTGSYL( 'T', IJB, N1, N2, A, LDA, A( I, I ), LDA,
     $                         WORK, N1, B, LDB, B( I, I ), LDB,
     $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
     $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
     $                         IERR )
               END IF
               GO TO 40
            END IF
            DIF( 1 ) = DSCALE / DIF( 1 )
*
*           1-norm-based estimate of Difl.
*
   50       CONTINUE
            CALL DLACN2( MN2, WORK( MN2+1 ), WORK, IWORK, DIF( 2 ),
     $                   KASE, ISAVE )
            IF( KASE.NE.0 ) THEN
               IF( KASE.EQ.1 ) THEN
*
*                 Solve generalized Sylvester equation.
*
                  CALL DTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA,
     $                         WORK, N2, B( I, I ), LDB, B, LDB,
     $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
     $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
     $                         IERR )
               ELSE
*
*                 Solve the transposed variant.
*
                  CALL DTGSYL( 'T', IJB, N2, N1, A( I, I ), LDA, A, LDA,
     $                         WORK, N2, B( I, I ), LDB, B, LDB,
     $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
     $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
     $                         IERR )
               END IF
               GO TO 50
            END IF
            DIF( 2 ) = DSCALE / DIF( 2 )
*
         END IF
      END IF
*
   60 CONTINUE
*
*     Compute generalized eigenvalues of reordered pair (A, B) and
*     normalize the generalized Schur form.
*
      PAIR = .FALSE.
      DO 80 K = 1, N
         IF( PAIR ) THEN
            PAIR = .FALSE.
         ELSE
*
            IF( K.LT.N ) THEN
               IF( A( K+1, K ).NE.ZERO ) THEN
                  PAIR = .TRUE.
               END IF
            END IF
*
            IF( PAIR ) THEN
*
*             Compute the eigenvalue(s) at position K.
*
               WORK( 1 ) = A( K, K )
               WORK( 2 ) = A( K+1, K )
               WORK( 3 ) = A( K, K+1 )
               WORK( 4 ) = A( K+1, K+1 )
               WORK( 5 ) = B( K, K )
               WORK( 6 ) = B( K+1, K )
               WORK( 7 ) = B( K, K+1 )
               WORK( 8 ) = B( K+1, K+1 )
               CALL DLAG2( WORK, 2, WORK( 5 ), 2, SMLNUM*EPS, BETA( K ),
     $                     BETA( K+1 ), ALPHAR( K ), ALPHAR( K+1 ),
     $                     ALPHAI( K ) )
               ALPHAI( K+1 ) = -ALPHAI( K )
*
            ELSE
*
               IF( SIGN( ONE, B( K, K ) ).LT.ZERO ) THEN
*
*                 If B(K,K) is negative, make it positive
*
                  DO 70 I = 1, N
                     A( K, I ) = -A( K, I )
                     B( K, I ) = -B( K, I )
                     Q( I, K ) = -Q( I, K )
   70             CONTINUE
               END IF
*
               ALPHAR( K ) = A( K, K )
               ALPHAI( K ) = ZERO
               BETA( K ) = B( K, K )
*
            END IF
         END IF
   80 CONTINUE
*
      WORK( 1 ) = LWMIN
      IWORK( 1 ) = LIWMIN
*
      RETURN
*
*     End of DTGSEN
*
      END