summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dsysv.f
blob: add53850958e20a27d65f33c3f7faf80469c0f49 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
      SUBROUTINE DSYSV( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK,
     $                  LWORK, INFO )
*
*  -- LAPACK driver routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDA, LDB, LWORK, N, NRHS
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DSYSV computes the solution to a real system of linear equations
*     A * X = B,
*  where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
*  matrices.
*
*  The diagonal pivoting method is used to factor A as
*     A = U * D * U**T,  if UPLO = 'U', or
*     A = L * D * L**T,  if UPLO = 'L',
*  where U (or L) is a product of permutation and unit upper (lower)
*  triangular matrices, and D is symmetric and block diagonal with
*  1-by-1 and 2-by-2 diagonal blocks.  The factored form of A is then
*  used to solve the system of equations A * X = B.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          = 'U':  Upper triangle of A is stored;
*          = 'L':  Lower triangle of A is stored.
*
*  N       (input) INTEGER
*          The number of linear equations, i.e., the order of the
*          matrix A.  N >= 0.
*
*  NRHS    (input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of the matrix B.  NRHS >= 0.
*
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
*          N-by-N upper triangular part of A contains the upper
*          triangular part of the matrix A, and the strictly lower
*          triangular part of A is not referenced.  If UPLO = 'L', the
*          leading N-by-N lower triangular part of A contains the lower
*          triangular part of the matrix A, and the strictly upper
*          triangular part of A is not referenced.
*
*          On exit, if INFO = 0, the block diagonal matrix D and the
*          multipliers used to obtain the factor U or L from the
*          factorization A = U*D*U**T or A = L*D*L**T as computed by
*          DSYTRF.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  IPIV    (output) INTEGER array, dimension (N)
*          Details of the interchanges and the block structure of D, as
*          determined by DSYTRF.  If IPIV(k) > 0, then rows and columns
*          k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
*          diagonal block.  If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
*          then rows and columns k-1 and -IPIV(k) were interchanged and
*          D(k-1:k,k-1:k) is a 2-by-2 diagonal block.  If UPLO = 'L' and
*          IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
*          -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
*          diagonal block.
*
*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
*          On entry, the N-by-NRHS right hand side matrix B.
*          On exit, if INFO = 0, the N-by-NRHS solution matrix X.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,N).
*
*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The length of WORK.  LWORK >= 1, and for best performance
*          LWORK >= max(1,N*NB), where NB is the optimal blocksize for
*          DSYTRF.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -i, the i-th argument had an illegal value
*          > 0: if INFO = i, D(i,i) is exactly zero.  The factorization
*               has been completed, but the block diagonal matrix D is
*               exactly singular, so the solution could not be computed.
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            LQUERY
      INTEGER            LWKOPT, NB
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      EXTERNAL           LSAME, ILAENV
*     ..
*     .. External Subroutines ..
      EXTERNAL           DSYTRF, DSYTRS, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      LQUERY = ( LWORK.EQ.-1 )
      IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -8
      ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
         INFO = -10
      END IF
*
      IF( INFO.EQ.0 ) THEN
         IF( N.EQ.0 ) THEN
            LWKOPT = 1
         ELSE
            NB = ILAENV( 1, 'DSYTRF', UPLO, N, -1, -1, -1 )
            LWKOPT = N*NB
         END IF
         WORK( 1 ) = LWKOPT
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DSYSV ', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Compute the factorization A = U*D*U' or A = L*D*L'.
*
      CALL DSYTRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
      IF( INFO.EQ.0 ) THEN
*
*        Solve the system A*X = B, overwriting B with X.
*
         CALL DSYTRS( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
*
      END IF
*
      WORK( 1 ) = LWKOPT
*
      RETURN
*
*     End of DSYSV
*
      END