summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dpptrf.f
blob: a5e2a596cfde6c602ec3fa07e6b49c6b2c81b677 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
      SUBROUTINE DPPTRF( UPLO, N, AP, INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   AP( * )
*     ..
*
*  Purpose
*  =======
*
*  DPPTRF computes the Cholesky factorization of a real symmetric
*  positive definite matrix A stored in packed format.
*
*  The factorization has the form
*     A = U**T * U,  if UPLO = 'U', or
*     A = L  * L**T,  if UPLO = 'L',
*  where U is an upper triangular matrix and L is lower triangular.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          = 'U':  Upper triangle of A is stored;
*          = 'L':  Lower triangle of A is stored.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
*          On entry, the upper or lower triangle of the symmetric matrix
*          A, packed columnwise in a linear array.  The j-th column of A
*          is stored in the array AP as follows:
*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*          See below for further details.
*
*          On exit, if INFO = 0, the triangular factor U or L from the
*          Cholesky factorization A = U**T*U or A = L*L**T, in the same
*          storage format as A.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  if INFO = i, the leading minor of order i is not
*                positive definite, and the factorization could not be
*                completed.
*
*  Further Details
*  ======= =======
*
*  The packed storage scheme is illustrated by the following example
*  when N = 4, UPLO = 'U':
*
*  Two-dimensional storage of the symmetric matrix A:
*
*     a11 a12 a13 a14
*         a22 a23 a24
*             a33 a34     (aij = aji)
*                 a44
*
*  Packed storage of the upper triangle of A:
*
*  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            J, JC, JJ
      DOUBLE PRECISION   AJJ
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DDOT
      EXTERNAL           LSAME, DDOT
*     ..
*     .. External Subroutines ..
      EXTERNAL           DSCAL, DSPR, DTPSV, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DPPTRF', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
      IF( UPPER ) THEN
*
*        Compute the Cholesky factorization A = U'*U.
*
         JJ = 0
         DO 10 J = 1, N
            JC = JJ + 1
            JJ = JJ + J
*
*           Compute elements 1:J-1 of column J.
*
            IF( J.GT.1 )
     $         CALL DTPSV( 'Upper', 'Transpose', 'Non-unit', J-1, AP,
     $                     AP( JC ), 1 )
*
*           Compute U(J,J) and test for non-positive-definiteness.
*
            AJJ = AP( JJ ) - DDOT( J-1, AP( JC ), 1, AP( JC ), 1 )
            IF( AJJ.LE.ZERO ) THEN
               AP( JJ ) = AJJ
               GO TO 30
            END IF
            AP( JJ ) = SQRT( AJJ )
   10    CONTINUE
      ELSE
*
*        Compute the Cholesky factorization A = L*L'.
*
         JJ = 1
         DO 20 J = 1, N
*
*           Compute L(J,J) and test for non-positive-definiteness.
*
            AJJ = AP( JJ )
            IF( AJJ.LE.ZERO ) THEN
               AP( JJ ) = AJJ
               GO TO 30
            END IF
            AJJ = SQRT( AJJ )
            AP( JJ ) = AJJ
*
*           Compute elements J+1:N of column J and update the trailing
*           submatrix.
*
            IF( J.LT.N ) THEN
               CALL DSCAL( N-J, ONE / AJJ, AP( JJ+1 ), 1 )
               CALL DSPR( 'Lower', N-J, -ONE, AP( JJ+1 ), 1,
     $                    AP( JJ+N-J+1 ) )
               JJ = JJ + N - J + 1
            END IF
   20    CONTINUE
      END IF
      GO TO 40
*
   30 CONTINUE
      INFO = J
*
   40 CONTINUE
      RETURN
*
*     End of DPPTRF
*
      END