summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dormrz.f
blob: 9e14acce000f327469fda83aa4c660e245a7b230 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
      SUBROUTINE DORMRZ( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
     $                   WORK, LWORK, INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          SIDE, TRANS
      INTEGER            INFO, K, L, LDA, LDC, LWORK, M, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DORMRZ overwrites the general real M-by-N matrix C with
*
*                  SIDE = 'L'     SIDE = 'R'
*  TRANS = 'N':      Q * C          C * Q
*  TRANS = 'T':      Q**T * C       C * Q**T
*
*  where Q is a real orthogonal matrix defined as the product of k
*  elementary reflectors
*
*        Q = H(1) H(2) . . . H(k)
*
*  as returned by DTZRZF. Q is of order M if SIDE = 'L' and of order N
*  if SIDE = 'R'.
*
*  Arguments
*  =========
*
*  SIDE    (input) CHARACTER*1
*          = 'L': apply Q or Q**T from the Left;
*          = 'R': apply Q or Q**T from the Right.
*
*  TRANS   (input) CHARACTER*1
*          = 'N':  No transpose, apply Q;
*          = 'T':  Transpose, apply Q**T.
*
*  M       (input) INTEGER
*          The number of rows of the matrix C. M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix C. N >= 0.
*
*  K       (input) INTEGER
*          The number of elementary reflectors whose product defines
*          the matrix Q.
*          If SIDE = 'L', M >= K >= 0;
*          if SIDE = 'R', N >= K >= 0.
*
*  L       (input) INTEGER
*          The number of columns of the matrix A containing
*          the meaningful part of the Householder reflectors.
*          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
*
*  A       (input) DOUBLE PRECISION array, dimension
*                               (LDA,M) if SIDE = 'L',
*                               (LDA,N) if SIDE = 'R'
*          The i-th row must contain the vector which defines the
*          elementary reflector H(i), for i = 1,2,...,k, as returned by
*          DTZRZF in the last k rows of its array argument A.
*          A is modified by the routine but restored on exit.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A. LDA >= max(1,K).
*
*  TAU     (input) DOUBLE PRECISION array, dimension (K)
*          TAU(i) must contain the scalar factor of the elementary
*          reflector H(i), as returned by DTZRZF.
*
*  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
*          On entry, the M-by-N matrix C.
*          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
*
*  LDC     (input) INTEGER
*          The leading dimension of the array C. LDC >= max(1,M).
*
*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.
*          If SIDE = 'L', LWORK >= max(1,N);
*          if SIDE = 'R', LWORK >= max(1,M).
*          For optimum performance LWORK >= N*NB if SIDE = 'L', and
*          LWORK >= M*NB if SIDE = 'R', where NB is the optimal
*          blocksize.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  Further Details
*  ===============
*
*  Based on contributions by
*    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            NBMAX, LDT
      PARAMETER          ( NBMAX = 64, LDT = NBMAX+1 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LEFT, LQUERY, NOTRAN
      CHARACTER          TRANST
      INTEGER            I, I1, I2, I3, IB, IC, IINFO, IWS, JA, JC,
     $                   LDWORK, LWKOPT, MI, NB, NBMIN, NI, NQ, NW
*     ..
*     .. Local Arrays ..
      DOUBLE PRECISION   T( LDT, NBMAX )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      EXTERNAL           LSAME, ILAENV
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLARZB, DLARZT, DORMR3, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      LEFT = LSAME( SIDE, 'L' )
      NOTRAN = LSAME( TRANS, 'N' )
      LQUERY = ( LWORK.EQ.-1 )
*
*     NQ is the order of Q and NW is the minimum dimension of WORK
*
      IF( LEFT ) THEN
         NQ = M
         NW = MAX( 1, N )
      ELSE
         NQ = N
         NW = MAX( 1, M )
      END IF
      IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
         INFO = -2
      ELSE IF( M.LT.0 ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
         INFO = -5
      ELSE IF( L.LT.0 .OR. ( LEFT .AND. ( L.GT.M ) ) .OR.
     $         ( .NOT.LEFT .AND. ( L.GT.N ) ) ) THEN
         INFO = -6
      ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
         INFO = -8
      ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
         INFO = -11
      END IF
*
      IF( INFO.EQ.0 ) THEN
         IF( M.EQ.0 .OR. N.EQ.0 ) THEN
            LWKOPT = 1
*
*           Determine the block size.  NB may be at most NBMAX, where
*           NBMAX is used to define the local array T.
*
            NB = MIN( NBMAX, ILAENV( 1, 'DORMRQ', SIDE // TRANS, M, N,
     $                               K, -1 ) )
            LWKOPT = NW*NB
         END IF
         WORK( 1 ) = LWKOPT
*
         IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN
            INFO = -13
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DORMRZ', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 ) THEN
         WORK( 1 ) = 1
         RETURN
      END IF
*
      NBMIN = 2
      LDWORK = NW
      IF( NB.GT.1 .AND. NB.LT.K ) THEN
         IWS = NW*NB
         IF( LWORK.LT.IWS ) THEN
            NB = LWORK / LDWORK
            NBMIN = MAX( 2, ILAENV( 2, 'DORMRQ', SIDE // TRANS, M, N, K,
     $              -1 ) )
         END IF
      ELSE
         IWS = NW
      END IF
*
      IF( NB.LT.NBMIN .OR. NB.GE.K ) THEN
*
*        Use unblocked code
*
         CALL DORMR3( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
     $                WORK, IINFO )
      ELSE
*
*        Use blocked code
*
         IF( ( LEFT .AND. .NOT.NOTRAN ) .OR.
     $       ( .NOT.LEFT .AND. NOTRAN ) ) THEN
            I1 = 1
            I2 = K
            I3 = NB
         ELSE
            I1 = ( ( K-1 ) / NB )*NB + 1
            I2 = 1
            I3 = -NB
         END IF
*
         IF( LEFT ) THEN
            NI = N
            JC = 1
            JA = M - L + 1
         ELSE
            MI = M
            IC = 1
            JA = N - L + 1
         END IF
*
         IF( NOTRAN ) THEN
            TRANST = 'T'
         ELSE
            TRANST = 'N'
         END IF
*
         DO 10 I = I1, I2, I3
            IB = MIN( NB, K-I+1 )
*
*           Form the triangular factor of the block reflector
*           H = H(i+ib-1) . . . H(i+1) H(i)
*
            CALL DLARZT( 'Backward', 'Rowwise', L, IB, A( I, JA ), LDA,
     $                   TAU( I ), T, LDT )
*
            IF( LEFT ) THEN
*
*              H or H' is applied to C(i:m,1:n)
*
               MI = M - I + 1
               IC = I
            ELSE
*
*              H or H' is applied to C(1:m,i:n)
*
               NI = N - I + 1
               JC = I
            END IF
*
*           Apply H or H'
*
            CALL DLARZB( SIDE, TRANST, 'Backward', 'Rowwise', MI, NI,
     $                   IB, L, A( I, JA ), LDA, T, LDT, C( IC, JC ),
     $                   LDC, WORK, LDWORK )
   10    CONTINUE
*
      END IF
*
      WORK( 1 ) = LWKOPT
*
      RETURN
*
*     End of DORMRZ
*
      END