1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
|
SUBROUTINE DOPGTR( UPLO, N, AP, TAU, Q, LDQ, WORK, INFO )
*
* -- LAPACK routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, LDQ, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION AP( * ), Q( LDQ, * ), TAU( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* DOPGTR generates a real orthogonal matrix Q which is defined as the
* product of n-1 elementary reflectors H(i) of order n, as returned by
* DSPTRD using packed storage:
*
* if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),
*
* if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* = 'U': Upper triangular packed storage used in previous
* call to DSPTRD;
* = 'L': Lower triangular packed storage used in previous
* call to DSPTRD.
*
* N (input) INTEGER
* The order of the matrix Q. N >= 0.
*
* AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
* The vectors which define the elementary reflectors, as
* returned by DSPTRD.
*
* TAU (input) DOUBLE PRECISION array, dimension (N-1)
* TAU(i) must contain the scalar factor of the elementary
* reflector H(i), as returned by DSPTRD.
*
* Q (output) DOUBLE PRECISION array, dimension (LDQ,N)
* The N-by-N orthogonal matrix Q.
*
* LDQ (input) INTEGER
* The leading dimension of the array Q. LDQ >= max(1,N).
*
* WORK (workspace) DOUBLE PRECISION array, dimension (N-1)
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL UPPER
INTEGER I, IINFO, IJ, J
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL DORG2L, DORG2R, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
INFO = -6
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DOPGTR', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
IF( UPPER ) THEN
*
* Q was determined by a call to DSPTRD with UPLO = 'U'
*
* Unpack the vectors which define the elementary reflectors and
* set the last row and column of Q equal to those of the unit
* matrix
*
IJ = 2
DO 20 J = 1, N - 1
DO 10 I = 1, J - 1
Q( I, J ) = AP( IJ )
IJ = IJ + 1
10 CONTINUE
IJ = IJ + 2
Q( N, J ) = ZERO
20 CONTINUE
DO 30 I = 1, N - 1
Q( I, N ) = ZERO
30 CONTINUE
Q( N, N ) = ONE
*
* Generate Q(1:n-1,1:n-1)
*
CALL DORG2L( N-1, N-1, N-1, Q, LDQ, TAU, WORK, IINFO )
*
ELSE
*
* Q was determined by a call to DSPTRD with UPLO = 'L'.
*
* Unpack the vectors which define the elementary reflectors and
* set the first row and column of Q equal to those of the unit
* matrix
*
Q( 1, 1 ) = ONE
DO 40 I = 2, N
Q( I, 1 ) = ZERO
40 CONTINUE
IJ = 3
DO 60 J = 2, N
Q( 1, J ) = ZERO
DO 50 I = J + 1, N
Q( I, J ) = AP( IJ )
IJ = IJ + 1
50 CONTINUE
IJ = IJ + 2
60 CONTINUE
IF( N.GT.1 ) THEN
*
* Generate Q(2:n,2:n)
*
CALL DORG2R( N-1, N-1, N-1, Q( 2, 2 ), LDQ, TAU, WORK,
$ IINFO )
END IF
END IF
RETURN
*
* End of DOPGTR
*
END
|