summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dlasq1.f
blob: 6f4c34130d0cf7bf1a77c0cdcfa01d23470a2330 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
      SUBROUTINE DLASQ1( N, D, E, WORK, INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            INFO, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   D( * ), E( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DLASQ1 computes the singular values of a real N-by-N bidiagonal
*  matrix with diagonal D and off-diagonal E. The singular values
*  are computed to high relative accuracy, in the absence of
*  denormalization, underflow and overflow. The algorithm was first
*  presented in
*
*  "Accurate singular values and differential qd algorithms" by K. V.
*  Fernando and B. N. Parlett, Numer. Math., Vol-67, No. 2, pp. 191-230,
*  1994,
*
*  and the present implementation is described in "An implementation of
*  the dqds Algorithm (Positive Case)", LAPACK Working Note.
*
*  Arguments
*  =========
*
*  N     (input) INTEGER
*        The number of rows and columns in the matrix. N >= 0.
*
*  D     (input/output) DOUBLE PRECISION array, dimension (N)
*        On entry, D contains the diagonal elements of the
*        bidiagonal matrix whose SVD is desired. On normal exit,
*        D contains the singular values in decreasing order.
*
*  E     (input/output) DOUBLE PRECISION array, dimension (N)
*        On entry, elements E(1:N-1) contain the off-diagonal elements
*        of the bidiagonal matrix whose SVD is desired.
*        On exit, E is overwritten.
*
*  WORK  (workspace) DOUBLE PRECISION array, dimension (4*N)
*
*  INFO  (output) INTEGER
*        = 0: successful exit
*        < 0: if INFO = -i, the i-th argument had an illegal value
*        > 0: the algorithm failed
*             = 1, a split was marked by a positive value in E
*             = 2, current block of Z not diagonalized after 30*N
*                  iterations (in inner while loop)
*             = 3, termination criterion of outer while loop not met 
*                  (program created more than N unreduced blocks)
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO
      PARAMETER          ( ZERO = 0.0D0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, IINFO
      DOUBLE PRECISION   EPS, SCALE, SAFMIN, SIGMN, SIGMX
*     ..
*     .. External Subroutines ..
      EXTERNAL           DCOPY, DLAS2, DLASCL, DLASQ2, DLASRT, XERBLA
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           DLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, SQRT
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      IF( N.LT.0 ) THEN
         INFO = -2
         CALL XERBLA( 'DLASQ1', -INFO )
         RETURN
      ELSE IF( N.EQ.0 ) THEN
         RETURN
      ELSE IF( N.EQ.1 ) THEN
         D( 1 ) = ABS( D( 1 ) )
         RETURN
      ELSE IF( N.EQ.2 ) THEN
         CALL DLAS2( D( 1 ), E( 1 ), D( 2 ), SIGMN, SIGMX )
         D( 1 ) = SIGMX
         D( 2 ) = SIGMN
         RETURN
      END IF
*
*     Estimate the largest singular value.
*
      SIGMX = ZERO
      DO 10 I = 1, N - 1
         D( I ) = ABS( D( I ) )
         SIGMX = MAX( SIGMX, ABS( E( I ) ) )
   10 CONTINUE
      D( N ) = ABS( D( N ) )
*
*     Early return if SIGMX is zero (matrix is already diagonal).
*
      IF( SIGMX.EQ.ZERO ) THEN
         CALL DLASRT( 'D', N, D, IINFO )
         RETURN
      END IF
*
      DO 20 I = 1, N
         SIGMX = MAX( SIGMX, D( I ) )
   20 CONTINUE
*
*     Copy D and E into WORK (in the Z format) and scale (squaring the
*     input data makes scaling by a power of the radix pointless).
*
      EPS = DLAMCH( 'Precision' )
      SAFMIN = DLAMCH( 'Safe minimum' )
      SCALE = SQRT( EPS / SAFMIN )
      CALL DCOPY( N, D, 1, WORK( 1 ), 2 )
      CALL DCOPY( N-1, E, 1, WORK( 2 ), 2 )
      CALL DLASCL( 'G', 0, 0, SIGMX, SCALE, 2*N-1, 1, WORK, 2*N-1,
     $             IINFO )
*         
*     Compute the q's and e's.
*
      DO 30 I = 1, 2*N - 1
         WORK( I ) = WORK( I )**2
   30 CONTINUE
      WORK( 2*N ) = ZERO
*
      CALL DLASQ2( N, WORK, INFO )
*
      IF( INFO.EQ.0 ) THEN
         DO 40 I = 1, N
            D( I ) = SQRT( WORK( I ) )
   40    CONTINUE
         CALL DLASCL( 'G', 0, 0, SCALE, SIGMX, N, 1, D, N, IINFO )
      END IF
*
      RETURN
*
*     End of DLASQ1
*
      END