1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
|
SUBROUTINE DLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
*
* -- LAPACK auxiliary routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER DIRECT, STOREV
INTEGER K, LDT, LDV, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION T( LDT, * ), TAU( * ), V( LDV, * )
* ..
*
* Purpose
* =======
*
* DLARFT forms the triangular factor T of a real block reflector H
* of order n, which is defined as a product of k elementary reflectors.
*
* If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
*
* If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
*
* If STOREV = 'C', the vector which defines the elementary reflector
* H(i) is stored in the i-th column of the array V, and
*
* H = I - V * T * V'
*
* If STOREV = 'R', the vector which defines the elementary reflector
* H(i) is stored in the i-th row of the array V, and
*
* H = I - V' * T * V
*
* Arguments
* =========
*
* DIRECT (input) CHARACTER*1
* Specifies the order in which the elementary reflectors are
* multiplied to form the block reflector:
* = 'F': H = H(1) H(2) . . . H(k) (Forward)
* = 'B': H = H(k) . . . H(2) H(1) (Backward)
*
* STOREV (input) CHARACTER*1
* Specifies how the vectors which define the elementary
* reflectors are stored (see also Further Details):
* = 'C': columnwise
* = 'R': rowwise
*
* N (input) INTEGER
* The order of the block reflector H. N >= 0.
*
* K (input) INTEGER
* The order of the triangular factor T (= the number of
* elementary reflectors). K >= 1.
*
* V (input/output) DOUBLE PRECISION array, dimension
* (LDV,K) if STOREV = 'C'
* (LDV,N) if STOREV = 'R'
* The matrix V. See further details.
*
* LDV (input) INTEGER
* The leading dimension of the array V.
* If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
*
* TAU (input) DOUBLE PRECISION array, dimension (K)
* TAU(i) must contain the scalar factor of the elementary
* reflector H(i).
*
* T (output) DOUBLE PRECISION array, dimension (LDT,K)
* The k by k triangular factor T of the block reflector.
* If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
* lower triangular. The rest of the array is not used.
*
* LDT (input) INTEGER
* The leading dimension of the array T. LDT >= K.
*
* Further Details
* ===============
*
* The shape of the matrix V and the storage of the vectors which define
* the H(i) is best illustrated by the following example with n = 5 and
* k = 3. The elements equal to 1 are not stored; the corresponding
* array elements are modified but restored on exit. The rest of the
* array is not used.
*
* DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
*
* V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
* ( v1 1 ) ( 1 v2 v2 v2 )
* ( v1 v2 1 ) ( 1 v3 v3 )
* ( v1 v2 v3 )
* ( v1 v2 v3 )
*
* DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
*
* V = ( v1 v2 v3 ) V = ( v1 v1 1 )
* ( v1 v2 v3 ) ( v2 v2 v2 1 )
* ( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
* ( 1 v3 )
* ( 1 )
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, J
DOUBLE PRECISION VII
* ..
* .. External Subroutines ..
EXTERNAL DGEMV, DTRMV
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
IF( LSAME( DIRECT, 'F' ) ) THEN
DO 20 I = 1, K
IF( TAU( I ).EQ.ZERO ) THEN
*
* H(i) = I
*
DO 10 J = 1, I
T( J, I ) = ZERO
10 CONTINUE
ELSE
*
* general case
*
VII = V( I, I )
V( I, I ) = ONE
IF( LSAME( STOREV, 'C' ) ) THEN
*
* T(1:i-1,i) := - tau(i) * V(i:n,1:i-1)' * V(i:n,i)
*
CALL DGEMV( 'Transpose', N-I+1, I-1, -TAU( I ),
$ V( I, 1 ), LDV, V( I, I ), 1, ZERO,
$ T( 1, I ), 1 )
ELSE
*
* T(1:i-1,i) := - tau(i) * V(1:i-1,i:n) * V(i,i:n)'
*
CALL DGEMV( 'No transpose', I-1, N-I+1, -TAU( I ),
$ V( 1, I ), LDV, V( I, I ), LDV, ZERO,
$ T( 1, I ), 1 )
END IF
V( I, I ) = VII
*
* T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i)
*
CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T,
$ LDT, T( 1, I ), 1 )
T( I, I ) = TAU( I )
END IF
20 CONTINUE
ELSE
DO 40 I = K, 1, -1
IF( TAU( I ).EQ.ZERO ) THEN
*
* H(i) = I
*
DO 30 J = I, K
T( J, I ) = ZERO
30 CONTINUE
ELSE
*
* general case
*
IF( I.LT.K ) THEN
IF( LSAME( STOREV, 'C' ) ) THEN
VII = V( N-K+I, I )
V( N-K+I, I ) = ONE
*
* T(i+1:k,i) :=
* - tau(i) * V(1:n-k+i,i+1:k)' * V(1:n-k+i,i)
*
CALL DGEMV( 'Transpose', N-K+I, K-I, -TAU( I ),
$ V( 1, I+1 ), LDV, V( 1, I ), 1, ZERO,
$ T( I+1, I ), 1 )
V( N-K+I, I ) = VII
ELSE
VII = V( I, N-K+I )
V( I, N-K+I ) = ONE
*
* T(i+1:k,i) :=
* - tau(i) * V(i+1:k,1:n-k+i) * V(i,1:n-k+i)'
*
CALL DGEMV( 'No transpose', K-I, N-K+I, -TAU( I ),
$ V( I+1, 1 ), LDV, V( I, 1 ), LDV, ZERO,
$ T( I+1, I ), 1 )
V( I, N-K+I ) = VII
END IF
*
* T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i)
*
CALL DTRMV( 'Lower', 'No transpose', 'Non-unit', K-I,
$ T( I+1, I+1 ), LDT, T( I+1, I ), 1 )
END IF
T( I, I ) = TAU( I )
END IF
40 CONTINUE
END IF
RETURN
*
* End of DLARFT
*
END
|